Ecole doctorale IAEM Lorraine Université de Metz
Département de Formation Doctorale en Informatique UFR MIM

Head systems and applications to
bio-informatics

THESIS

presented and publicly defended 21 June 2004

for the obtention of degree of

Doctor in Philosophy of University of Metz

speciality Computer Science
by

Serghei Verlan

Composition of examining board

Director Maurice Margenstern Professor at the University of Metz
Referees Tero Harju Researcher at the University of Turku,
Academy of Finland
Giancarlo Mauri Professor at the University of Milano-Bicocca, Italy
Jean Néraud Professor at the University of Rouen
Examiners Hoai An Le Thi Professor at the University of Metz
Hazel Everett Professor at the University of Nancy 2

Laboratoire d’Informatique Théorique et Appliquée

Acknowledgments

First of all I would like to thank the supervisor of my thesis, Maurice Margenstern,
whose scientific experience guided me a lot in my work. I thank him equally for his
patience with me and for his help during these last years.

I thank a lot my professor from Moldova, Yurii Rogozhin, who initiated me
to the domain of molecular computing. Our discussions during his stays in Metz
contributed in a direct or indirect way to results of this work, and I appreciate a lot
his support.

I would also like to thank my co-authors: Rudolf Freund, Franziska Freund,
Marion Oswald, Gheorghe Paun and Rosalba Zizza for original ideas that 1 would
maybe never find without their help.

I would like to address a particular acknowledgment to Gheorghe Paun who often
inspired me with numerous ideas.

I also thank all persons with whom I spend wonderful moments during confer-
ences and who often suggested me interesting ideas, in particular Daniela Besozzi,
Claudio Feretti, Pierluigi Frisco, and Claudio Zandron.

I acknowledge the NATO project PST.CLG.976912 and the project IST-2001-
32008 “MolCoNet” that permitted me to participate conferences, present my works,
and exchange ideas and experience. I also thank Ministry of National Education and
Research of France for the financial support of my PhD as well as the “Laboratoire
d’Informatique Théorique et Appliquée” of the Metz University that accommodated
me, and in particular its secretary Damien Aignel who helped me often in adminis-
trative tasks.

I would also like to thank all my friends in Metz that permitted me to feel here
like home.

Finally, I thank my parents who always believed in me and who supported me
during these years.

ii

Contents

Introduction

1 Preliminaries
1.1 Words and languages Lo oo
1.2 Formal grammarso
1.3 Finite automata and Turing machines

State of the art

21
2.2
2.3
24
2.5
2.6

Splicing operation L L Lo
Head splicing systems00
Extensions of H systems L.
Test tube systems
Time-varying distributed H systems
Membrane systems oL oL

1-splicing vs 2-splicing

3.1
3.2

3.3

Formal definition of H systems
Examples of classes of splicing languages
3.2.1 2-splicing languageso
3.2.2 Classes of 1-splicing languages that cannot be 2-splicing lan-

BUALES « « o e e e e e
3.2.3 Examples of classes of regular languages that are not 1-splicing

languages
Conclusions

Time-varying distributed H systems

4.1

4.2
4.3
44
4.5

Extended Hsystems
4.1.1 Definitions and results
4.1.2 The “rotate-and-simulate” method
TVDH systems
The computational power of TVDH systems
A “small” universal TVDH system
Correction of existent systems
4.5.1 Correction of the system TVDH3

il

0 1

10

11
11
12
14
15
16
18

23
23
29
29

31

35
37

iv
4.5.2 Correction of the system TVDH4
4.5.3 Correction of the system TVDH7
4.6 Conclusions
5 Enhanced time-varying distributed H systems
5.1 Formal definition
5.2 The generative power of ETVDH systems
5.3 Conclusions
6 The method of directing molecules
6.1 Description of the method
6.2 ETVDH systems of degree 2
6.3 TVDH systems of degree 1.
6.4 Conclusions o0
7 Test tube systems with alternating filters
7.1 Test tubesystems.
7.2 Test tube systems with alternating filters.
7.2.1 The computational power of TTFoo
7.2.2 TTFo4 with garbage collection
7.2.3 TTFoo with garbage collection
7.3 Conclusions
8 DModified test tube systems
8.1 Modified test tube systems.
8.2 Conclusions Lo o
9 Splicing P systems
9.1 Splicing membrane systems
9.1.1 Decidability results
9.1.2 Undecidability results
9.1.3 Systems of type 2b, 2cand 2a
9.2 Non-extended splicing P systems
9.3 Splicing P systems with immediate communication
9.4 Conclusions
Conclusions

Bibliography

CONTENTS

57

......... 57
......... 58
......... 66

67

......... 67
......... 68
......... 75
......... 81

83

......... 83
......... 86
......... 86
......... 90
......... 92
......... 98

Introduction

Everything is number. By taking this ancient pythagorean idea and by combining
it with the fact that a number is a result of computation, we can reformulate the
above sentence and say that everything is computation. We can find examples
of computations in numerous domains, but the most fascinating example is the
life. It is not easy to give an exact definition of this complex phenomena, but at
the moment it is supposed that the most important ingredient of the life is the
desoxyribonucleic acid, the DNA, which is sometimes replaced by the ribonucleic
acid, or RNA. In fact, all living beings which we know have this molecule and
the nature uses simple operations of copying, pasting, insertion, deletion etc. in
order to manipulate it. We see that we need only small bricks, the DNA, and
simple rules in order to describe certain structural aspects of living beings and
maybe even the diversity of the nature. We can remark a parallel with the theory
of computability, where we also use very simple elements in order to construct
functions which perform complex computations. This analogy leads us to the idea
that the nature computes, but maybe in a different way that we do not understand
completely yet. From chaos to inorganic matter, from inorganic to organic, from
unconsciousness to intelligence, perhaps the entire evolution of the universe is a
history of the ever-increasing complexity of the computation. All this may appear
as a metaphysical speculation, but, who knows, maybe our actual conception of
computation is dependent on the evolution of the humankind, like the utilisation
of base ten for counting is depending on our having of ten fingers. In the same
way humans moved on to counting in other bases, maybe it is time to find new
conceptions of a computation which will be different from the ones we used before.

A first step was made by L. Adleman in 1994 who showed for the first time
that it is possible to use these new operations and data structures in order to solve
concrete problems. His experiment shows how to solve an instance of a problem of a
hamiltonian path in a graph. It is amazing, but by using DNA molecules, enzymes
and other chemicals and by manipulating test tubes, it is possible to find a solution
to this concrete mathematical problem. The Adleman’s experiment, published in
“Science”, see |1], stimulated the study of new models of computing based on biology.
Various aspects of biological mechanisms were studied from a computational point
of view and the results are very promising, because the obtained models permit,
of cause from a theoretical point of view, to overcome ordinary computers. Com-
pact data structures, massive parallelism and modest energy consumption are the

2 INTRODUCTION

advantages which affirm the superiority, at least theoretical, of computers based on
biological principles.

We remark that a theoretical study of biological systems from a computational
point of view started long before 1994. In fact, already in 1987, T. Head in his
article “Formal Language Theory and DNA: an Analysis of the Generative Capacity
of Specific Recombinant Behaviors”, [12], showed connections between the molecular
biology and the theory of formal languages. His pioneer vision of the molecular
recombination permitted him to observe long time before Adleman the importance
and the enormous potential of biologically based computations. The systems that
he introduced and which we call now Head systems, based on the splicing operation,
represent even now an important branch of the domain. The idea of Head was very
simple: to replace DNA molecules by words and enzymes by splicing rules. After
that, everything is mixed in a test tube and the system is let to evolve. But, despite
his work, we can say that the birth of the domain of (bio)-molecular computing
dates to the Adleman experiment, which showed that the things considered before
as fiction become from now onwards realisable.

What are the aims of this domain? The most important goal is of course to
construct a computer based on biological principles. But for the moment, it is still
difficult to conjecture when we will work on such computers. Another very im-
portant goal is to understand how the nature computes and, maybe, to find new
computational paradigms which could be implemented even on ordinary supports.
Like the study of brain permitted to create neural networks and the study of evo-
lution emerged to creation of genetic algorithms, we hope to learn from the nature
new methods of computation which we shall be able to use in the future.

DNA is not the only source of inspiration in finding new computational para-
digms. We can also place ourselves at the cellular level. In fact, the living cell is an
astonishing piece of machinery which the nature perfects all the time. Everything
is present here: communication with the environment, signal recognition, search in
the DNA database, reaction, production and consumption of energy... Shortly,
the understanding of cell functionality is perhaps the key that will permit us to
understand secrets of life. But if we can imagine computations with DNA, we can
also imagine computations with cells. In this case, the structural aspect become
more and more important, as the cell may be seen as a set of membranes nested
one in another. The first model of computing based on the cell structure and on
cellular processes was proposed in 1998 by Gh. Paun who is considered the father of
this domain: membrane computing. From then on, more than a hundred of variants
were proposed and their number increase permanently. The current level of the
technology does not permit its implementation in wvivo or in wvitro, but, as we said
before, one of the reasons for which we study the models issued from the biology is
to find new possibilities of computation different from these we have used till now.

From one hand, the theory of formal languages is grounded on rewriting op-
erations. From the other hand, the nature uses different operations like copy and
paste as well as different data structures. This is why it is very important to re-
construct old computational paradigms in this new framework. Whether or not this

INTRODUCTION 3

has practical significance, for the computer science applications this is a premature
question.

We shall stop here for further metaphysical speculations and refer to the arti-
cle [16] which contains an excellent introduction to the domain, as well as a lot
of philosophical reflections that we presented here only in a small part. Further,
the books [44] and [43] contain a very detailed presentation of motivations and ex-
pectations concerning the area of molecular computing, membrane computing and
natural computing in general.

The present thesis tries to answer certain questions above. We will concentrate
on the study of certain models of molecular computing and membrane computing
in order to show their equivalence with classical models like formal grammars and
Turing machines. We do even a step further by showing directly, without going by
classical systems, the equivalence of some considered models. Finally, we conceived
a method which permits to simplify the proof of these equivalences as well as con-
struction of specific systems. We remark that all models that we consider have a
common point: they are based on the splicing operation. Therefore, we can say
that we make a detailed study of this operation which is indeed very powerful by
itself and, as it is shown in numerous examples in this work, only small additions
are necessary to make it as powerful as the rewriting.

We also remark that our work is purely theoretical and that we consider math-
ematical aspects of molecular computing but not the biological one.

Now we will describe the contents of the thesis chapter by chapter.

Chapter 1

We shortly present in this chapter some definitions from the theory of formal lan-
guages and fix the notations for further use.

Chapter 2

We introduce in informal manner the systems that we investigate in this work and
we review the state of the art.

Chapter 3

We introduce in this chapter the central notions of our thesis: the splicing operation
and Head systems, or H systems. We consider two possible definitions of the splicing:
1-splicing and 2-splicing, and we study for the first time the relation between classes
of languages based on 1-splicing and on 2-splicing. We show that between these
two families there is a relation of a strict inclusion. Also, in this chapter we present
numerous examples of H systems as well as of regular languages which cannot be
splicing languages.

4 INTRODUCTION

Chapter 4

We introduce in this chapter an extension of H systems: extended H systems and we
present the “rotate-and-simulate” method which is often used in order to show an
equivalence with a formal grammar. We also introduce time-varying distributed H
systemns, or TVDH systems, which is a simple and at the same time powerful model.
We remark that structure of these systems is quite simple to permit their numerous
utilisations, and we frequently used them afterwards. We show that it is possible
to generate all recursively enumerable languages by TVDH systems with with two
components, and that it is possible to simulate the behaviour of tag systems with
one component. We remark that the last system has a very compact description. We
present in the same chapter results obtained with the help of the computer program
TVDHsim which permits to simulate TVDH systems. In fact, this program permitted
to find errors in certain articles on TVDH systems, and we present corresponding
systems as well as modifications necessary to give them a correct behaviour in the
cases where it was possible. We also add that the same program helped us to
acquire a big experience in construction of systems based on splicing by highlighting
the errors which are common to several authors. Finally, we remark that all TVDH
systems from this work were checked with the help of this program.

Chapter 5

The chapter 5 introduce an extension of TVDH systems, enhanced time-varying
distributed H systems which have a more complex behaviour. We show that three
components are enough in order to generate all recursively enumerable languages.

Chapter 6

The chapter 6 contain an analysis of the proof technique used in previous two chap-
ters. This analysis emerges with a new method, the method of directing molecules,
which permits to decrease surprisingly the complexity of corresponding systems by
showing that they have an additional control which we put in evidence. By using
this intrinsic control, we can eagsily decrease the number of components needed to
obtain the computational power of a Turing machine. Thus, we arrive to limits of
these systems by showing for them the frontier between the decidability and unde-
cidability. At the end of this chapter we propose a generalisation of the method of
directing molecules which we shall further use in Chapters 7 and 8.

Chapter 7

We consider in this chapter another extension of H systems: test tube systems,
or communicating distributed H systems. We show that the open problem of the
computational power of such systems having two tubes stimulated the apparition
of numerous variants of these systems. We introduce here a new variant, test tube
systems with alternating filters, and we show that in this case two tubes suffice in
order to generate all recursively enumerable languages. Moreover, it is possible to

INTRODUCTION 5

place rules in the first tube in a way that permits to have no rules in the second tube
which is used only as a garbage collector. Another contribution of this result is that
it shows that H systems are already powerful enough and it is sufficient to make
small modifications in order to go from regularity to universality. The method of
directing molecules plays an important role in this chapter, and most of the proofs
use it thoroughly.

Chapter 8

This chapter contains another variant of test tube systems, modified test tube sys-
tems. A small detail differentiates these systems, but it is enough to obtain with
two tubes only the computational power of a Turing machine. We remark that this
result is very difficult to obtain without using our method of directing molecules
because the corresponding systems have an extremely complex behaviour. Also, the
concept of mobile trash, when the unwanted molecules avoid the rules which may
be applied to them, needs a good synchronisation between different parts of the
computation.

Chapter 9

We concentrate in this chapter on membrane systems, or P systems, in particular
on variants that use the splicing operation. We show that the original definition
of splicing P systems is not complete, and we propose several variants in order to
complete it. We show that the choice of the variant is important and that the
computational power of splicing P systems having one membrane depends on it
directly. In the same chapter we consider other variants of splicing P systems, non-
extended splicing P systems and splicing P systems with immediate communication,
and we show how it is possible to decrease their main complexity parameter: the
number of membranes. We present a final solution, as we show a frontier between
the decidability and undecidability for these systems. We also show that the method
of directing molecules is applicable in this new framework.
Finally, we present some conclusions and discuss some open problems.

INTRODUCTION

Chapter 1

Preliminaries

In this chapter we fix the notations that we shall use in the future. For more details
concerning the theory of formal languages we refer to [15] and [47].

1.1 Words and languages

We denote by N the set of natural numbers {0,1,2,...} and by NT the set of
strictly positive integer numbers {1,2,...}. We also denote by) the empty set and
by P(X) the set of all subsets of X. The number of elements of a set X is denoted
by Card(X).

An alphabet is a finite non-empty set of symbols which are also called letters. A
word over the alphabet V' is a concatenation of symbols of V. The empty concate-
nation is called the empty word and it is denoted by €. The set of all words over V
is denoted by V*. The set of all words over an alphabet V', except the empty word,
is denoted by V. Any subset of V* is called a language over the alphabet V.

If © = x129 with z1, 29 € V*, then we say that the word x; is a prefiz of z and
that the word zs is a suffix of x. If x = x1xoxs with z1, 29,23 € V*, then x5 is
called factor of x. The set of prefixes, suffixes and factors of a word z is denoted by
Pref(x), Suf(z) and Fact(x), respectively.

The length of the word z € V* is the number of symbols which appear in x
and it is denoted by |z|. The number of occurrences of a symbol @ € V in z € V*
is denoted by |z|,. If x € V* and U C V, the we denote by |z|y the number of
occurrences of symbols from U in x.

We denote boolean operations over languages in an ordinary way: the intersec-
tion by N, the union by U or + and the difference by \.

The concatenation of two languages L; and Lo is defined by:

LiLy = {xy X € Ll,y S LQ}.

We define the iteration of the concatenation as follows:

8 CHAPTER 1. PRELIMINARIES

LO = {5}7
Liy1=LL', i>0,

¢]
L* = U L' (Kleene closure).
=0

We say that a family of languages F is closed with respect to an n-ary operation
g if the result of the application of g on languages L1, ..., L, belonging to F also
belongs to F: g(L1,...,L,) € F.

1.2 Formal grammars

A formal grammar is the following quadruplet G = (N, T, S, P), where N and T are
two disjoint alphabets, S € IV is the axiom and P is a finite set of rewriting rules
of the form u — v, u,v € (NUT)* with |u|ny > 0. The alphabet N, respectively T,
is called the non-terminal, respectively terminal, alphabet of G. The rules of P are
also called productions.
For z,y € (NUT)* we write:
T ? y if
T = riuxe, Yy = r1vry with 21,29 € (N UT)* and there is a production u — v € P.
In this case we say that x derive directly y. We can omit G if the context permits
us to do so. We denote by = the reflexive and transitive closure of =. We write

:L':k>y if there are words wyo,...,w; such that w; = w;4+1,7 > 0 and wy = = and
wy =Y. We write z % y, where P’ is a subset of P, if in order to obtain y starting
from x we use productions only from P’.

Each word w € (N UT)* derived from the axiom of the grammar G: S :;> w is

called a sentential form of G.
The language generated by G, L(G), is defined by:

LG)={weT":S>w

Depending on the form of its rules formal grammars may be of one of the fol-
lowing types.

o Arbitrary grammars (of type 0):
Productions are of the form v — v, where u,v € (N UT)* and |u|y > 0.

o Context-sensitive grammars (of type 1):
Productions are of the form uj Aug — ujzug, where uj,ug € (NUT)*, A€ N
and z € (NUT)™.

e Context-free grammars (of type 2):
Productions are of the form A — x, where A € N and z € (NUT)*.

1.2. FORMAL GRAMMARS 9

e Regular grammars (of type 3):
Productions are either of form A — aB and A — a, or of form A — Ba and
A —a, where A Be NandacT.

We denote by RE, CS, CF and respectively REG the family of languages
generated by arbitrary, context-dependent, context-free and regular grammars re-
spectively. The families RE, CS, CF and REG respectively are called the family
of recursively enumerable, context-sensitive, context-free and regular languages re-
spectively. These families form the hierarchy of Chomsky. We also denote by FIN
the family of finite languages. The following strict inclusions hold.

FIN C REGCCF cCSCRE.

The closure properties of the above families with respect to the operations on
languages are shown in Tab. 1.1.

Table 1.1: Closure properties of families in the Chomsky hierarchy.

‘ Operation ‘ RE ‘ CS ‘ CF ‘ REG ‘
Union Yes | Yes | Yes Yes
Intersection Yes | Yes | No Yes
Concatenation Yes | Yes | Yes Yes
Kleene closure Yes | Yes | Yes | Yes
Intersection with REG | Yes | Yes | Yes | Yes

A tag system of degree m > 0, see [4] and [32], is the triplet T = (m,V, P),
where V' = {a1,...,ap41} is an alphabet and where P is a set of productions of
form a; — P;,1 < i < n, P, € V*. The symbol a,y1 is called a halting symbol.
A configuration of the system 7" is a word w. We pass from the configuration
w = a;, ...a;,w to the next configuration z by erasing the first m symbols of w
and by adding P;, to the end of the word: w=-z, if z = w'P;,.

The computation of T' over the word x € V* is a sequence of configurations
x=...=y, where either y = apt1a;, ...a;,_,y', or ¥y =y and |y/| < m. In this
case we say that T halts on z and that ¢ is the result of the computation of T over
x. We say that T recognises the language L if for all x € L, T halts on z, and T
halts only on words from L.

We note that tag systems of degree 2 are able to recognise the family of recur-
sively enumerable languages, see |4] and [32].

We recall an important notion of a constant for a a regular language L introduced
by Schutzenberger in [48]. We give here an equivalent definition which is simpler,
see [12, 13].

Definition 1.2.1. [12, 13| The word w € V* is a constant for a language L if
whenever xwy and vwv belong to L, the words zwv and vwy also belong to L.

10 CHAPTER 1. PRELIMINARIES

We shall frequently use the following remark.

Remark 1.2.1. Let L C V* be a regular language. It is clear that if ¢ ¢ V, then the
word c is a constant for languages Le, cL and LeL. Also, it is easy to see that if
c,d ¢ V', then the words ¢ and d are constants for the language cL + Ld. Finally,
the set {ca : @ € V'} is a finite set of constants for the language cLc.

1.3 Finite automata and Turing machines

A finite automaton is the quintuplet M = (Q,V, qo, F,), where Q is a finite set of
states, V is a finite set of symbols, go € @ is the initial state, F' C @ is the set of
final states and where § : @ xV — P(Q) is the transition function of the automaton.
We define the transition b in an ordinary way: (s,ax) b (s',2) if s € 6(s,a), where
5,8 € Q,a €V and x € V*. We denote by * the reflexive and transitive closure
of I-.

We say that the word = is accepted by M if (qo,x) F* (¢,e) and ¢ € F. the
language accepted by M is:

L(M)={z€V":(q,z) " (g,¢),q € F}.

We also use a graphic notation in order to define a finite automaton. In this
case the finite automaton will be represented by a finite oriented graph whose nodes
represent the states of the automaton and whose edges are defined by the transition
function of the automaton. More exactly, there is an arc labeled by a between
vertices ¢; and g; of the graph if ¢; € 0(¢;,a). The final states are enclosed by a
double circle.

A Turing machine is the 6-tuple M = (Q, T, ag, qo, F, 6), where @ is a finite set
of states, T is the tape alphabet, ag € T is the blanc symbol, ¢y € @Q is the initial
state, F' C @) is the set of final states and where ¢ is a transition function. Every
rule of 4, also called instruction, is of form ¢;arDa;q;, where ¢;,q; € Q, ag,a; € T
and where D € {L,S, R}. The semantic of the rule g;apDa;q; is the following: if
being in the state ¢; the head of the machine sees the symbol a; on the tape, then
it changes its state to gj, replaces aj by a; and moves to the left if D = L, to the
right if D = R or remains in the same position if D = S. We note that for any
Turing machine which has stationary instructions, .e. without a move, it is possible
to construct an equivalent machine which will have no stationary instruction.

A configuration of the Turing machine M is the following word wig;arws, where
wiagws is the part of the tape which is not empty, ¢; is the state of the machine
and ay, is the cell which is examined by the head of the machine.

A computation of the Turing machine M on the word x € T is a sequence of
configurations qox = ... w1qswz, where gy € F'. The initial configuration may be of
form ujqoua, where x = ujug, but we may suppose without loosing generality that
it is of form ggx. In this case we say that wjyws is the result of computation of M
on the word x.

Chapter 2

State of the art

2.1 Splicing operation

The experiment of Adleman [1] stimulated the study of different biological opera-
tions from computational point of view. Operations that he used: synthesis, am-
plification, separation, extraction and detection as well as similar operations were
considered by different authors, and they showed how it is possible to solve different
mathematical problems using these operations. E.g., polynomial solutions for SAT,
DES and other problems were proposed [19]. An important characteristic of all
these operations is that they correspond to real biological operations, therefore it is
possible really to implement them in vitro. From the other side, the formalisation of
these operations is difficult, as a lot of physically originated quantitative parameters
must be taken in consideration. This is why some authors chose another approach.
They formalise biological operations, but idealise the constraints of physical origin.
The obtained operations, like insertion, deletion, splicing etc., have numerous theo-
retical advantages, but their practical realisation remains difficult. We remark that
both approaches are interesting, but we shall especially concentrate on the second
one. More precisely, we study the splicing operation and various systems based on
this operation.

We should precise that the theoretical study of splicing started long time before
the Adleman’s experiment. In 1987 T. Head in his article [12] revealed an unex-
pected connection between molecular biology and the theory of formal languages.
By formalising the process of action of restriction and ligation enzymes he obtained
a splicing operation defined on strings of characters. Thus, splicing systems, or Head
splicing systems, were introduced as a new language generating device.

We do not present here all steps that are necessary to go over to a formal op-
eration from a biological event as all necessary details may be found in [44, 12].
We start directly by the formal description. A splicing rule over an alphabet A is
the following quadruplet (uj,ue;us,uq),u; € A*, which we also denote as follows:
uy HuaSus#ug, where {#,8} ¢ A. We apply this rule to a pair of words, called also
molecules, x = x1ujusxrs and y = y1usuqayz and we obtain two words: w = Tiuju4ys
and z = yjusuexre. So we look through initial words for the substrings indicated

11

12 CHAPTER 2. STATE OF THE ART

in the splicing rule (these substrings are called splicing sites). After that the initial
strings are cut off at the place indicated by the rule and their ends are exchanged
and joined. More exactly, the splicing operation exchange the ends of two words,
the place where this exchange is done being indicated by the rule. We denote this
by (z,y) b (w, z). In this case we say that we perform a 2-splicing. If we consider
ounly w as a result, then we say that we perform an 1-splicing. 2-splicing is a weaker
operation than 1-splicing. It can be easily simulated by the last one. This is why
2-splicing is generally used in the literature, as all results obtained for 2-splicing can
be easily translated into terms of 1-splicing.

The definition of splicing given above was proposed by Gh. Paun in [37]. There
are two more definitions of splicing, one proposed by T. Head in [12], and the other
one proposed by D. Pixton in [33]. These definitions have similar properties. A
comparison of their computational power may be found in [61]. The mostly accepted
definition is the definition of Paun, and we shall concentrate on it in the rest of this
work.

We remark that a molecule may contain several identical sites that contain the
substrings of the splicing rule. To perform a splicing, only one of these sites is chosen
in a non-deterministic way. We assume additionally that the number of molecules
z and y that participate in splicing is not restricted. Thus x and y may be used
again for a splicing, i.e. they are not consumed by the splicing. This consideration
has a physical origin as the number of molecules in several grammes of a solution is
of order 10?2

Let V be an alphabet and let R be a set of splicing rules. We say that o = (V| R)
is a splicing scheme. Now we can define the application of the splicing operation
on a language L, o(L), which is the result of all possible splicings of words from L.
The properties of languages with respect to the splicing operation are discussed in
detail in Chapter 7.2 of [44].

2.2 Head splicing systems

Now we will show how it is possible to use the splicing operation as a language
generating device.

We define the iteration of o(L) as follows:

o%(L) =L,

otY(L) = o' (L) Uo(ai(L)), i >0,

O'*(L) = Ul'zoO'i(L).

A Head splicing system, or an H system, is the couple H = (0, A) where o
is a splicing scheme and A C V* is a set of words called axioms. The language
generated by such system is L(H) = 0*(A). So the language generated by an H
system is the result of the iterative application of the splicing operation over the
set of axioms. Intuitively the work of an H system correspond to the following
biological experiment: we take DNA molecules, which correspond to axioms, and
enzymes, which correspond to splicing rules, we mix them in a test tube, and we
wait until all reactions stop. From the other side, this process permits to generate

2.2. HEAD SPLICING SYSTEMS 13

languages starting from a finite set of initial words and from a finite set of splicing
rules.

These systems were considered for the first time by T. Head who showed some
interesting properties. Later, K. Culik II and T. Harju showed in [6] that the
computational power of such systems is limited by the family of regular languages.
After that H systems with non-finite sets of rules or non-finite sets of axioms were
considered. If we denote by H(Fi,F2) the family of languages generated by H
systems having axioms that belong to the family F; and having splicing rules which
belong to the family F3, then the following results shown in Tab. 2.1 are known, see
also [44].

Table 2.1: The computational power of families H(Fj, F2)

FIN REG LIN CF cs RE

FIN | FIN,REG | FIN,RE | FIN,RE | FIN,RE | FIN,RE | FIN,RE
REG REG REG,RE | REG,RE | REG,RE | REG,RE | REG,RE
LIN | LIN,CF | LIN,RE | LIN,RE | LIN,RE | LIN,RE | LIN,RE

CF CF CF,RE | CF,RE | CF,RE | CF,RE | CF,RE
CS | CS,RE | CS,RE | CS,RE | CS,RE | CS,RE | CS,RE
RE RE RE RE RE RE RE

We placed in this table at the intersection of row JF; and column F» the family
H(Fy,F2). If there are two elements in the corresponding cell, then we have a strict
inclusion F3 C H(fl,fg) C Fy.

We underline three results from this table.

H(FIN,FIN) C REG,

H(REG,FIN) = REG,

H(FIN,REG) C RE.

These inclusions show the limits of the iterative splicing. Even if we use a
regular set of axioms, we cannot go beyond regularity with a finite set of rules. The
situation changes when a regular set of rules is permitted. However, this approach
satisfying the demands of a theoretician seems to be far away from the biological
model that supposes that these two parameters are finite. Moreover, by claiming
that H systems are a language generating device like formal grammars or Turing
machines, we suppose that an infinite language is generated starting from finite
parameters. We shall speak later about certain solutions that will have a finite
number of components while still keeping a big computational power, but they need
an additional control.

The first inclusion above was showed for the first time in [6] using algebraic
properties of splicing languages. After that, D. Pixton in [33| simplified the proof
using finite automata. This proof may be found with full details in [14]. A new
simplification of the proof for Paun’s definition was done in [44|. Recently, V. Manca
in [20] proposed a proof based on the decomposition of the splicing operation in three
operations: cut, paste and delete.

The same inclusion poses the problem of characterisation for the family of finite

14 CHAPTER 2. STATE OF THE ART

splicing languages, i.e., when the sets of axioms and splicing rules are finite. This
problem is still open, but there are some partial solutions. For example, T. Head
in [13] characterised the family of languages generated by splicing systems with rules
of the form u#teSv#e or e#tu$ec#v. These systems have interesting connections with
the concept of a constant for a regular language introduced by Schutzenberger in [48].
More exactly, the words which appear as sites of splicing rules are constants for the
generated language. In the same article [13], interesting connections with the theory
of finite automata may be found.

Characterisations of splicing language classes may be also found in [12, 11].
S.M. Kim in [17] gave a partial answer for Head’s definition of the splicing. A
sufficient condition for a regular language to be a splicing language is given in PhD
thesis of R. Zizza [61] and an article concerning this subject is in preparation. An
overview of works in this direction is given in the cited thesis.

Another problem which was not studied before is the comparison of H systems
based on 1-splicing and H systems based on 2-splicing. A remark that 2-splicing
may be simulated by 1-splicing was given in [44]. But it was not known if this
inclusion is strict. We studied this problem and we proved in [56] in collaboration
with R. Zizza that this inclusion is strict. The proof of this result may be found in
Chapter 3 of this thesis.

2.3 Extensions of H systems

The study of H systems reached its limits very quickly. This is why their various
extensions of them were proposed. A first step is to introduce a terminal alphabet.
An extended H system is an H system H equipped with a terminal alphabet T". The
language generated by such system consists of all words over the alphabet T' that
are generated by H. We can produce in the framework of this model all regular
languages starting from a finite number of elements.

Another idea proposed afterwards is to consider two finite sets of substrings
associated to each rule. The application of the rule is controlled by these sets in the
following way: the application of a rule on two words is permitted if and only if all
elements of the first set appear, respectively do not appear, in the first word and all
elements of the second set appear, respectively do not appear, in the second word.
In other respects they function like extended H systems. The obtained systems are
called H systems with permitting, respectively forbidding, context. It is possible to
reach the power of a Turing machine using these two models.

In the meantime a model which is similar to extended H systems was proposed
and that uses multisets of words instead of sets. Again, this model permits to simu-
late an arbitrary grammar, hence to generate all recursively enumerable languages.

There are other models that are modifications of H systems and that permit to

obtain the computational power of a Turing machine. An overview of these models
and their properties may be found in Chapter 8 of [44].

2.4. TEST TUBE SYSTEMS 15

2.4 Test tube systems

As we said before, H systems do not have big computational power. In order to
simulate more closely biological phenomena and to obtain a sufficient computational
power, a new element, the distribution of the computation, was introduced. Most
of the models are inspired simultaneously by H systems and distributed grammars,
see [47]. We shall concentrate on some of them; an overview of existing models is
given in [44].

One of the first models inspired simultaneously by H systems and distributed
grammars is the model of test tube systems, or communicating distributed H sys-
tems, introduced by E. Csuhaj-Varju, L. Kari and G. Paun in [5]. This model
introduces test tubes that are composed of a set of axioms, a set of splicing rules
and a set of letters, called filter. The computation in such system consists of two
iteratively repeated steps. During the first step, the computing, each tube evolves
as an ordinary H system. During the second step, the communication, molecules
that are present in each tube are sent to all tubes. Molecules that can pass a filter
of a tube, i.e., which are composed only from the letters that form the filter, remain
in the corresponding tube and form the initial language for the next step of compu-
tation. If a molecule can pass several filters, each of corresponding tubes receives a
copy of this molecule. The molecules which cannot pass any filter remain in the tube
where they were produced. The language generated by a test tube system consists
of all words over the terminal alphabet which are produced by the system at some
step and which are in the first tube.

In the article introducing these systems their universality was shown, but without
indicating a concrete number of tubes. After that, in [59], the authors proved that
10 tubes are enough in order to generate all recursively enumerable languages. A
little bit later the same authors showed that 9 tubes suffice |60]. The number of
tubes necessary to obtain the computational power of Turing machines was reduced
down to 6, see [39], and finally established to 3, see |34]. We remark that with one
tube we obtain extended H systems, therefore we cannot produce more than regular
languages. The computational power of test tube systems having two tubes is still
an open problem, but Gh. Paun in 44| suppose that the languages generated by
such systems belong to the family of context-free languages.

This last problem stimulated the apparition of variants of test tube systems. In
the most of cases the changes occur only at the level of filtering. For example, in
the variant proposed by R. Freund and F. Freund in |8], the filters are finite unions
of sets and a molecule can pass a filter if and only if it is composed of elements of
these sets with the condition that all elements from the same set must be present.

The obtained model is very powerful and, in this case, two tubes suffice to
generate all recursively enumerable languages.

Another variant was proposed in [10] by P. Frisco and C. Zandron. This variant
has a special two letters filter that contains letters or couples of letters. A molecule
can pass the filter if and only if it is composed from the letters of the filter or both
letters from a couple appear in the molecule. In this case two tubes also permit

16 CHAPTER 2. STATE OF THE ART

reach the computational power of Turing machines.

We introduced in |55] another variant of test tube systems: test tube systems
with alternating filters. In this variant, the filters are replaced by tuples of filters,
each filter in a tuple being a simple set of letters. At each step, the next filter from
a tuple is used for the filtering. When the last filter of the tuple is reached, then we
continue with the first filter.

Again two test tubes having two tuples of filters suffice in order to generate
all recursively enumerable languages. It is possible to have both filters of the first
couple that are identical, or to have two filters of each component that differ only
in one letter. We also obtained an unexpected result: it is possible to generate
all recursively enumerable languages by a system with two tubes where the second
tube does not contain any rule and which is used only as a garbage collector, so the
universality is obtained with “one tube and a half”! Another contribution of this
result is that it shows that H systems are already powerful enough and it suffices to
make small modifications in order to go from the regularity to the universality. All
these results may be found in Chapter 7 of the present work.

We propose one more variant of test tube systems. This variant, modified test
tube systems, differs from the original definition by a “small” detail: if a molecule
can pass a filter of a tube different from the tube in which it was produced, then
this molecule do not remain any more in the initial tube even if it may pass its filter.
This difference, apparently not very important, permits to control the elimination
of words from a tube and, consequently, permits to modified test tube systems to
simulate arbitrary grammars. The results concerning these systems may be found
in Chapter 8 of this thesis.

We remark that the proof of these results on variants of test tube systems uses
the method of directing molecules described in our Chapter 6.

2.5 Time-varying distributed H systems

Shortly after the introduction of test tube systems another possibility for distribu-
tion of the computation was considered by Gh. Paun in [39]. He started from the
biological observation that at each moment there is a set of active enzymes which be-
have depending on conditions of the environment. If the environment (temperature,
acidity or other parameter) changes, then the set of active enzymes also change. In
the proposed model, the set of splicing rules changes periodically. More exactly, the
model contains a set of words, the axioms, and a finite number of sets of splicing
rules, the components. At each step, the current words are spliced once using the
rules of the current component, and the result of this splicing forms the set of words
for the next iteration. We remark that this elimination procedure is very powerful
and it permits to obtain a big computational power. The obtained systems are
called time-varying distributed H systems, or TVDH systems.

Initially Gh. Paun showed that 7 components are enough in order to generate
all recursively enumerable languages, see [40, 44]. This result was improved by
M. Margenstern and Yu. Rogozhin who showed first that TVDH systems with 2

2.5. TIME-VARYING DISTRIBUTED H SYSTEMS 17

components are able to do universal computations, see [22], and after that they
showed that 2 components are enough in order to generate all recursively enumerable
languages, see |21, 24]. Their proof is based on a simulation of a Turing machine,
so it is strictly sequential: only one molecule which encodes the tape and the state
of the machine shall be present in the system. But this does not correspond to the
parallel nature of biological transformations where several evolutions may occur in
the same time. In the meanwhile, another solution was proposed by A. Paun in [35]
who showed that it is possible to simulate the work of an arbitrary grammar with
4 components. In his solution several evolutions of molecules are made in the same
time, hence his variant is parallel. This result was improved by M. Margenstern
and Yu. Rogozhin who showed that a type-0 grammar can be simulated with 3
components, see [23]. The same authors showed that TVDH systems with one
component are universal, see |27|, and after that they showed that it is possible
to generate all recursively enumerable languages with only one component in a
sequential way, see [26]. We improved the above results by showing in collaboration
with M. Margenstern and Yu. Rogozhin that it is possible to generate any recursively
enumerable language in a parallel way with 2 components, see [28]. Finally, in the
framework of the same collaboration, the final point was reached by showing that it
is possible to generate all recursively enumerable languages in a parallel way with
one component, see [29]. These two results may be found in Chapters 4 and 6 of
the present thesis.

We also add that a computer program for TVDH system simulation that was
developed during our master thesis was widely used for construction and error check-
ing of the last two systems. This program also permitted to find errors in several
articles concerning TVDH systems. For example, the systems in [23] and [44] need
small corrections and the proof given in [35] must be completely rewritten. Further
details on this subject may be found in our Chapter 4.

A study of TVDH systems from a computational point of view may be found in
our master thesis [51] where TVDH systems for main arithmetic operations (addi-
tion, multiplication, exponentiation and division) and for the Ackermann function
were explicitly given. An implementation of the Euclid’s algorithm in TVDH sys-
tems may be found on the web site of the author, see [49]. On the same page, one
can find the developed program.

The big computational power of TVDH systems is due to their definition, in
particular to the fact that only one splicing is done and only the result of this splicing
is kept. From a biological point of view it is more natural to suppose that the number
of splicings is not limited and that none of molecules that participate in splicing
is eliminated. These observations lead us to enhanced time-varying distributed
H systems, or ETVDH systems, which were introduced by M. Margenstern and
Yu. Rogozhin in [23] under the name of extended distributed H systems. These
systems are a combination of TVDH systems and H systems, and we can treat
them as TVDH systems where each component behaves like an H system. The
elimination is permitted only if the considered molecule cannot enter any rule of the
current component.

18 CHAPTER 2. STATE OF THE ART

Now one component is not enough in order to obtain a big computational power
and, in this case, the generated language is limited by the family of regular lan-
guages. But two components are sufficient to generate all recursively enumerable
languages, as M. Margenstern and Yu. Rogozhin proved in [25]. Since this solu-
tion uses a simulation of a Turing machine, i.e., a sequential simulation, the same
problem of a parallel generation of recursively enumerable languages may be posed.
We investigated this problem and we progressively found solutions, at first with 4
components [50], after that with 3 components [52], and, finally, with 2 compo-
nents, see [54|. Therefore, for these systems the problem of parallel generation of
recursively enumerable languages is solved. The last two results may be found in
Chapters 5 and 6 of the present work.

2.6 Membrane systems

Until now we discussed H systems, their extensions, and their modifications. We note
that the inspiration for these models come from the ways living beings manipulate
their DNA. Another approach was developed by Gh. Paun who placed himself at the
level of a living cell. By inspiring from different intra- and inter-cellular processes
he created a new computational paradigm: membrane systems, or P systems.

Cell is considered as a set of nested membranes that contain objects and evolu-
tion rules. The spacial arrangement of membranes may be represented by a Venn
diagram, see Fig. 2.1, or by a tree whose nodes represent membranes and whose
edges are defined by the relation “be contained in”; see Fig. 2.2. The same struc-
ture can be defined by a string of matching parenthesis where the corresponding
parenthesis are marked by the same label. For example, the structure represented
in Fig. 2.1 may be described by the following word: [1 [2]2 [3]3 [4 [5]5 [6]6]4]1.

The base model is very abstract and it does not specify neither the nature of
objects nor the nature of rules. Numerous variants specify these two parameters by
obtaining a lot of different computing models. There are at the moment more than
a hundred of variants and their number increases permanently. More details may
be found on the P systems web page [58] which contains an excellent collection of
references on membrane systems.

The compartments delimited by membranes contain multisets of objects. The
nature of these objects may be very different. Firstly, we can consider non-structured
objects by making an analogy with chemical substances in the interior of the cell.
After that, it is possible to structure the objects and to consider them as strings of
characters. There are even variants which deal with complicated objects like graphs,
images etc. More details on these variants may be found in [43], as well as on the
aforementioned web page [58].

The evolution rules, which are generally placed into membranes, present a big
variety as well. Their complexity depend on the type of objects used. For simple
objects, the rules transform a multiset of objects in another multiset of objects. For
structured objects like strings of characters, rewriting or splicing rules are used.

One of the important properties of membrane systems is the communication.

2.6. MEMBRANE SYSTEMS 19

v Ve a

5]\
)

O S Y

Regions

Non-elementaty Jkin
membrane Membrane

Elementary
membrane

Figure 2.1: A membrane structure

All rules contain target indicators. If a rule contain the target indicator “out”, then
the result of its application is sent to the membrane which is immediately upper.
If the rule contain the target indicator “here”, then the result remains in the same
membrane. If the target indicator “in” is present, then the result is sent to an inner
membrane chosen non-deterministically.

This property of communication is so powerful, that it suffices by itself for a big
computational power, as in the case of membrane systems with symport/antiport.
These systems have two types of rules: symport rules, when several objects go
together from one membrane to another, and antiport rules, when several objects
from two membranes are exchanged. In spite of a simple definition, one membrane is
enough to simulate a register machine and, consequently, to generate all recursively
enumerable languages.

Another variant of membrane systems permits the modification of the membrane
structure by creation or deletion (dissolution) of membranes. These systems are very
interesting because they permit to solve NP-complete problems in a polynomial and
even linear time, see [43, 58|.

We studied a particular class of membrane systems, splicing P systems, which
is mixture of membrane systems and H systems. These systems have strings of
characters as objects and splicing rules enriched with target indicators as evolution

20 CHAPTER 2. STATE OF THE ART
/ | \

3 / 4 \

) 6

Figure 2.2: The tree representing the membrane structure from Fig. 2.1

2

rules. Moreover, contrarily to most variants of membrane systems, we use sets of
words instead of multisets, in each membrane. A step of computation represents
simultaneous application of all rules in each membrane followed by communication
of resulting molecules depending on target indicators. The result consists of all
molecules over a terminal alphabet sent outside of the skin membrane.

These systems were introduced by Gh. Pdun in [41] where their universality for
systems with 4 membranes was showed. The number of membranes necessary to
generate all recursively enumerable languages was decreased to 3 in [45] and after
that to 2, see [36]. The last result was improved from the point of view of the size
of splicing rules by P. Frisco in [9].

We investigated splicing P systems having only one membrane. We found that
the initial definition given by Gh. Paun in [41] is not complete and that it needs some
precisions. Even the revised definition which appeared in [43| does not cover all pos-
sibilities. We completed this definition by proposing 5 variants, and we showed that
the computational power depend on the variant which is used. We showed that for
the variant which is closest to the definition given by Gh. Paun, the computational
power is restricted by the family of regular languages. After that, we showed that
by considering three other variants we obtain all recursively enumerable languages.
For the remained variant we did not found a description of the generated language
yet, but we suppose that it is regular. More details may be found in Chapter 9 of
the present thesis.

We also studied the non-extended variant of splicing P systems. In the case of
these systems, we do not consider anymore terminal alphabet: all strings sent outside
of the skin membrane are considered as a result. Gh. Paun in [43] showed that by
using 2 additional membranes it is possible to transform an extended P system in
a non-extended one. Since there are extended P systems with 2 membranes, which
generate all recursively enumerable languages, the same computational power is
obtained with 4 membranes in the non-extended case. We showed that by carefully
rearranging the rules it is possible to arrive to two membranes only. This result
cannot be improved because with one membrane in the non-extended case we can
generate only a subset of regular languages. This result was proved in [53] and it
can be found in our Chapter 9.

Another variant of splicing P systems, splicing P systems with immediate com-

2.6. MEMBRANE SYSTEMS 21

munication, was proposed by C. Martin-Vide, Gh. Paun and A. Rodriguez-Patén
in [30]. In this variant, the result of the application of each rule must go outside the
membrane in which it was produced. Such systems are indeed a particular case of
splicing P systems where all rules have the four possible combinations of target indi-
cators “in” and “out”. These systems are able to generate all recursively enumerable
languages, but the original article did not indicate a fixed number of membranes.
We found similarities between these systems and TVDH systems and we showed
that 2 membranes suffice in order to generate all recursively enumerable languages.
We also showed that with one membrane we can generate ounly finite languages,
therefore we found a frontier between the decidability and undecidability for these
systems. Moreover, we found a connection between these systems and membrane
systems with splicing rules attached to membranes and not to the regions, see [7].
Now we start a formal analysis of the splicing operation and of H systemns.

22

CHAPTER 2. STATE OF THE ART

Chapter 3
1-splicing vs 2-splicing

We introduce in this chapter the central notions of our thesis, the splicing operation
and Head splicing systems, or H systems. We study two possible definitions of
splicing, 1-splicing and 2-splicing, and we show classes of languages which belong to
families of 1-splicing and 2-splicing languages. These classes are obtained starting
from languages cL, Lc¢, LeL, cLe, where L C V* is a regular language and ¢ &€ V.
We demonstrate for the first time that some of these classes are 1-splicing languages,
but cannot be 2-splicing languages. Therefore, the family of 2-splicing languages is
strictly included into the family of 1-splicing languages. We also show non-trivial
classes of regular languages which cannot be splicing languages.

3.1 Formal definition of H systems

We give in this section the formal definition of H systems and repeat some known
results.
We understand by an (abstract) molecule a word over an alphabet.

Definition 3.1.1. A splicing rule (over an alphabet V') is the 4-tuple (u1, ug, us, u4)
where uy,ug, us, uqs € V*. It is frequently written as uj#HuoSus#uy, {$,#} € V or

. . . Ul | u
in two dimensions: —’— The strings ujus and usuy are called splicing sites.
U3 | Ug

We say that a word x match the rule r if x contains an occurrence of one of the
two sites of . We say also that x and y are complementary with respect to a rule r
if « contains one site of r and y contains the other one. We say also in this case that
z or y may enter the rule . When x and y having x = xjujusx and y = y1usuqys
can enter a rule r = uy#us$us#uy we can define the application of r to the couple
x,y. The result of this application is w and z where w = z1ujuay2 et z = yiususxs.
We say also that « and y are spliced and w and z are the result of this splicing. We
write this as follows: (z,y) b, (w,z). We say also in this case that we perform a
2-splicing. 1f we take only w as a result in the previous definition, we say that we
perform an 1-splicing. We write it as follows: (z,y) F, w. We can also denote a
2-splicing as follows:

23

24 CHAPTER 3. 1-SPLICING VS 2-SPLICING

T1Uy | U2X2 - T1U1U4LY2

r - .
Yy1uz | u4y2 Y1uzuzx2
We can write 1-splicing similarly.

Example 3.1.1.

. hlo .
Let us consider the rule r: T’T and let us apply it to two molecules show

and blame:

sh | ow shame
bl | ame " blow

The pair 0 = (V, R) where V is an alphabet and R is a set of splicing rules is
called a splicing scheme or an H-scheme.

For a splicing scheme o = (V, R) and for a formal language L C V* we define:

o1(L) def {weV*Fz,ye L,Ir e R: (x,y) Fr w}.

o9(L) e {w,ze V*3zx,y e L,Ir € R: (x,y) b (w, 2)}.

Now we can introduce the iteration of the splicing operation.

oO(L) = L.

U;+1(L) = U;-(L) U Jj(aj-(L)), i>0,

G;(L) = Uizoo‘; (L).
where j € {1,2}.
We shall prove now that the splicing operation preserve the regularity of a lan-

guage.

Theorem 3.1.1. Let L C T* be a reqular language and let o = (T, R) be a splicing
scheme. Then the language L = o1(L) is a regular language.

Proof. We construct a regular grammar which generates £. To obtain this grammar
we take the regular grammar G; which generates L and we transform its set of
productions. We add some regular productions and we eliminate some initial ones
thus permitting to simulate the application of ¢ on L.

Now we consider the regular grammar G; = (N¢g, T, S, P;) such that L(G1) = L.
We do not detail the symbols of Ng because they are not relevant for our proof.
We may assume that all rules of P; are of the foom A — aB and A — a, where
A,B € Ng or a € T. We can also assume that GG; does not contain e-productions
and unreachable symbols.

We consider also the following sets of productions:

7 1

Pg= {Ug — ulujUh : 3n = —2e R}.

3| Ua

P[: contains all productions from P; where a prime character (’) is added to
each non-terminal symbol.

A — Ug
P. = UL — F' (F+¢) (A,B,C,D,E,F) € ParseRule;
U, —e(F=e¢)

3.1. FORMAL DEFINITION OF H SYSTEMS 25

where the set ParseRule; is defined by:

ParseRule; = {(A, B,C,D,E,F):3A= ut B = utubC, 3D = ulE = ubuy F,
A . G G G1 G1
7 1

= 2 R},
3| Us

In particular, C' and F may be equal to €. If F' = ¢, then the second production
of P, becomes UfE — €.

Briefly speaking, Pr contains productions which permit to simulate the appli-
cation of rules r; € R, P| contains a copy of initial productions and P, makes the
connection between P; and the previous two sets.

Let us consider P =P, \{A —a€ P,}UP/UPRrUP.,.

We take G = (N,T,S,P), where N = Ng U N, U{UL, UL : 3r; € R}. Tt is
easily seen that G is a regular grammar. The rules of P; and P| are already in
the necessary form, while rules of Pp and P, can be easily transformed into the
necessary form by using standard techniques like elimination of renamings and of
e-productions.

We note that in order to obtain a word in G we have to use either a production
from P{, or a production of the form Ué — ¢ from P,. This follows from the fact
that we eliminated all terminal productions of P; from P.

Fig. 3.1 shows how we transform the grammar G; into G. We substitute two
derivations in G1, indicated by a dashed line, by a derivation in G, indicated by a
solid line, which corresponds to the splicing of initial words. Furthermore, the initial
derivation became inaccessible in G as well.

LN
/
N
e
N
‘ N
/
z1A nD
/ AN
/ AN
/ AN
/ . \ .
Ui B r1Ug yus
v \
/
. \
/ \
i i i i T \
riujusC rrujuyUg \
/ \
4 \
rrujul F’ yrusuy I

)/ \ X\

T1ul ub T2

Figure 3.1:

Tiujuy y2

Transformation of G into G

N
Y1uzuy y2

26 CHAPTER 3. 1-SPLICING VS 2-SPLICING

We affirm that L(G) = o1(L).

The Fig. 3.1 shows the idea of the proof as well. A solid line represents a
derivation in G, while a dashed line represents derivations in GG1. For one inclusion
we shall construct a solid line derivation from two dashed ones. For another inclusion
we shall reconstruct two dashed line derivations from the solid one. The rule of R
which was applied can be reconstructed from these derivations.

1. L C L(G).
Let w be in L. In this case w € T™ and there are words z1ujusz and y1uzujys

. uj | uy . o
in £ and a rule 711’72 in R such that (z,y) F w = z1ujulys.
3] Uy

As zyutubzy is in £, we have the following derivation in Gy:

1Ug) g
S ;} 1A S 210l B = ruiub,C = riububas.

! Py Py P

Similarly, yiujujys € £ implies that there exists the following derivation:
S=y1D = yiub B = yrufus F = yrujuiys.

] P Py P

Then there is the following derivation in G:

1 . 1 . . . 1
S A= 11 U§ = ziujuyUy, = zrufuf F' = riufuyye, as if F = 4o, then F/ = ys.
Pl Pc PR Pc Pl/ Pl P{

We also have z1utulys € T*, consequently, w € L(G).

2. L(G)C L.

We note that it is not possible to obtain a terminal word in G not using pro-
ductions of P{, or one of productions U}; — ¢ from P.. Similarly, in order to reach
a noun-terminal symbol having a prime, or U};, we have to use productions from Pg
and P..

We recall also that the idea of the proof is to transform a derivation in G into
two derivations in G, which produce two words, to which a splicing rule may be
applied.

Let w be in L(G). Then there is a rule U, — F’ in P. (the case of the rule
Ul — e € P, is similar) such that there is the following derivation of w:

S=>r1A= 01U = viuiuyUp = viujuly F = ziufujy: = w.
Py Pe Pr Pe Py

Consequently, there is a rule r; = 11 u? in R and the following two deriva-
3| Ug

tions in Gy:
S= 1A= rul B= vl ubC = ziububes.
B 1 P 1%1 P 18142 P 1% U2L2
S =y D = y1uy E = yyubuly F = yrubulys.
P Py Py Py
The existence of A, B,C, D, E, F is guaranteed by the definition of P,. We can
also generate the second word, because D is accessible from the axiom.
So, we obtain z = zjujubzre and y = yjujuly: which belong to L(Gy). In this
case, x and y belong to L. ' '
iUl | ubxo

- - b, zyudut
7 7 ry L1UTULY2-
Yrug | ugy2 !

Therefore, we can apply r; to and y:

3.1. FORMAL DEFINITION OF H SYSTEMS 27

As w € T*, we conclude that w is in L.
O

If we iterate the process of construction of G starting from (G; and using each
time the obtained grammar instead of GG1, and if we do not eliminate productions of
Py, then we obtain a grammar which simulates the iteration of ¢ on L. The proof
of this affirmation is non-trivial and can be found in [44]|, where this result is proved
in terms of finite automata.

Definition 3.1.2. [12, 14] A Head splicing system or an H system is the pair H =
(0,A) = ((V,R), A), written shortly as H = (V, A, R), where V is a finite alphabet,
A C V*is a set of initial words, called axioms, and R C V* x V* x V* x V* is a set
of splicing rules.

We say that the H system H is finite if its sets A and R are finite.

The language generated by the splicing Head system H based on 2-splicing,
respectively 1-splicing, is L(H) def 03 (A), respectively L(H) aof i (A).

Therefore, the language generated by the H system H is the set of all molecules
produced by the iterative application of rules from R to copies of molecules obtained
before, and starting with A as initial set.

Example 3.1.2.

In this example we use 2-splicing.

Let us consider the system H = ((V, R), A) where V = {a,b}, R = {r : %’%}

and A = {abaa}.

We start with abaa. Then, 09(A) = {abaa}. We can apply the rule r to two
instances of this molecule: (albaa, abala) b, (aa,ababaa), where we emphasised
the splicing sites by |. We obtain 0i(A) = {abaa, aa,ababaa}. At the next step
we have the following applications:

(albaa, ala) -, (aa, abaa),

(albaa, ababala) . (aa, abababaa),

(albabaa, ala) -, (aa, ababaa),

(albabaa, abala) . (aa, abababaa),

(albabaa, ababala) b, (aa, ababababaa).

This gives us 03(A) = {abaa, aa, ababaa, abababaa, ababababaa}

We see that each splicing adds (ab)* at the left of the existing molecule.
Therefore, the language generated by this system is L(H) = (ab)*aa.

Now let us consider the same system, but taking A = {aab}. The functioning
of this new system H’ is different. At first we apply the rule r to aab and itself:
(aalb,alad) -, (aaab, ab). After that we have following possibilities:

(alb, alab) k. (aab, ab),

(alb, alaad) t, (aaab, ab),

(aalb, alaadb) b, (aaaab, ab),

(aaalb, alaab) F, (aaaaab,abd),

We can easily see that we add a at the left of existing molecules. Therefore,
the language generated by H' is L(H') = a™b.

28 CHAPTER 3. 1-SPLICING VS 2-SPLICING

Remark 3.1.1. Let S = (V, A, R) and S" = (V, A, R") be two H systems and R C R'.
Then L(S) C L(S").

We denote by Hi(FIN,FIN) the family of languages generated by finite H
systems based on 1-splicing. Similarly, we denote by Ho(FIN, FIN) the family of
languages generated by finite H systems based on 2-splicing. The language gener-
ated by an H system based on 1-splicing, respectively 2-splicing, is called 1-splicing
language, respectively 2-splicing language.

In the remaining of this chapter we consider non-finite regular languages and
finite H systems only.

Proposition 3.1.2. [14, 44] Hy(FIN, FIN) C Hy(FIN, FIN).

This proposition is based on the following reasoning. An H system is called sym-
metric if for any rule r = u; #us$us#us € R, R contain the rule r’ = ug#us$ui F#Hus.
It is easy to observe that an H system based on 2-splicing is implicitly supposed to
be symmetric. Consequently, every language produced by a system from the family
Hy(FIN, FIN) can be produced by a system in Hy(FIN, FIN) which is symmetric.
This argument was used in [14].

This property is one of the reasons why 2-splicing is used mainly in the literature:
all results obtained for 2-splicing can be easily reformulated in terms of 1-splicing.

Now we show the limits of finite splicing systems.

Theorem 3.1.3. /33, 14, 44/ Hi(FIN,FIN) C REG.

This result holds even if a regular set of axioms is used. The proof of this result
may be found in [33] and [14]. The book [44] contains a proof of this result based
on a simulation of the splicing operation by a finite automata. This proof is much
easier than the previous ones. It uses a construction similar to the one used during
the proof of Theorem 3.1.1, but translated in terms of finite automata.

Now we show that the previous inclusion is a strict one.

Proposition 3.1.4. Ly, = (aa)* € REG \ Hi(FIN,FIN).

Proof. We shall prove this statement by contradiction. Let S = (V, A, R) be an H
system which generates Lyq. We have V = {a}. Let also 7 € R, r = a*#a™$aP#al.
Consider an integer ¢ > 1 such that kK 4+m + ¢ > p + ¢ and that kK 4+ m + ¢ is even.
Let us consider now the word z = a**™*, By hypothesis z € L(S). We have now
two cases depending on the parity of k + ¢.

1. k+ g is even. We can have the following application of r to x and to itself.
(aak|amai_1,ak+m+i_(p+q)ap|aq) -, aktatl Z Loq.

This contradicts the hypothesis because S is closed with respect to the splicing.

2. k+ q is odd. We can have the following application of r to and to itself.
(ak|amai, ak+m+i—(p+q)ap|aq) -, akta ¢ Laa-

This gives us a contradiction.

3.2. EXAMPLES OF CLASSES OF SPLICING LANGUAGES 29

Therefore, we obtained the following result.

Theorem 3.1.5. H{(FIN,FIN) C REG.

3.2 Examples of classes of splicing languages

We shall concentrate below on languages obtained by union of a regular language
L C V* with the languages Le, cL, LeL and cLe, where ¢ € V', i.e. ¢ is a constant
for these languages. The next theorem is a corollary of a more general result proved
by T. Head in [13]. It shows that some of the languages above are splicing languages.

Theorem 3.2.1. [13/ Let L C V* be a regular language and c¢,d ¢ V. Then the
languages Le, cL, LcL, cLe and c¢L + Ld are in Ho(FIN,FIN). Moreover, each
rule of the H system which generates Lc, respectively cL, LeL, cLe and cL+ Ld, is of
form m#teSm/#e or eFmSe#m’, where m and m’ are constants for Le, respectively
cL, LcL, cLe and cL + Ld. The words m and m’ contain also c in the case of
languages Le, cL, LeL and cLe.

Remark 3.2.1. We note that the author used 1-splicing in [13]. But, as it was shown
in |2, 3], this result holds in case of 2-splicing.

3.2.1 2-splicing languages

Now we present some classes of 2-splicing languages that can be obtained starting
from the languages described above.

Proposition 3.2.2. Let L C V* be a reqular language and ¢ € V. Then the regular
languages L = L + Lc¢* and L' = L + ¢*L are 2-splicing languages.

Proof. Let us consider the language £. From Theorem 3.2.1 we obtain that there
is an H system S = (V U {c}, A, R) based on 2-splicing which generates Lc. Let
S = (VU{ch A, RU{r}), where r = e#cScfte. It is clear that L(S) C L(S9), see
Remark 3.1.1.

It is easy to see that L(S) = L. If we apply r to lc and to lc, | € L, we obtain [
and lcc. If we apply once more r to lc and to lcc, we obtain [ccc and so on.

More formally, at first we shall show by induction that £ C L(S). Let w be in
L. If w is in Le, we obtain that w is in L(S) which is a subset of L(S). If w is in L,
then there is a word wc in Lc and we can generate it in S. After that we can apply
r to we and itself: (we, we) b, (w, wee) obtaining w.

Now, let us suppose that w is in Lc?, i > 0, d.e. w = w'c’, where w' € L. Let us
show that w'c**1 € L(S). As we and we® are in L(S) by the induction hypothesis,
we obtain wct! by applying r to these two words: (we, wc'™1) F,. (w, wc).

Conversely, let w be in L(S). We use the induction on the number k& of iterations
of o used to produce w. If k = 0, then the word w is in A which is a part of L(S)

30 CHAPTER 3. 1-SPLICING VS 2-SPLICING

which is equal to Le. Let us consider now a word w produced in k41 iterations of o.
Let the last application of o be the following: (x,y) b (w1, w2) and w € {wy, ws}.
By the induction hypothesis x and y are in £. If 7’ is a rule from R, we get that x
and y are in LcT, because the sites of 7’ contain ¢, see Theorem 3.2.1. Consequently,
w is also in LeT. If 7/ = r, we obtain that x = x129, with 1 € Lc* and 29 € ¢t
and y = y1y2, with y3 € Lct and yo € ¢*. In this case wy = 1y belongs to Lc*
and wy = y1x9 belongs to Le™, d.e., wis in L.

We can show in a similar manner that £’ is a 2-splicing language. O

Proposition 3.2.3. Let L C V* be a reqular language and ¢ € V. Then, reqular
languages L = L + Lc and L' = L + cL are 1-splicing languages.

Proof. We use the same construction as in the previous proposition.

As ¢ ¢ V, cis a constant for Lc. Therefore, there an H system based on 1-
splicing S = (V U {c}, A4, R) such that Lc = L(S) (Theorem 3.2.1). Similarly to
Proposition 3.2.2, we consider the rule r = e#c$c#te and the system S = (V U
{c}, A, RU{r}). It is obvious that L + Lc = L(S), because rules of R permit to
produce Lc, while r permits to produce L. We note that it is important to use

1-splicing instead of 2-splicing in order to produce L. O

We do not know if this result remains true if 2-splicing is used, but we suppose
this.

Conjecture 3.2.1. Let L C V* be a regular language and ¢ ¢ V. Then, regular
languages £ = L 4 Le and £ = L + cL are 2-splicing languages.

We shall show now one possibility to solve this conjecture. Let us suppose that it
is possible to find an integer n and words z; € V* and w; € L, 1 <14 < n such that
for all zw;y € L the following two conditions are satisfied:

a) zw; € L

b)Vwe L:w=wz=wy=wzy€L

If it is possible to find such z; and w;, then after adding words w; to axioms the
rules z;#c$w;#e permit to generate L starting from Le. Similar conditions may be
formulated for the generation of L from cL.

The motivation of the previous statement is the following. First we observe that
we can generate the language Lc, see Theorem 3.2.1. After that, the main idea is
to produce a word z of L from the word xzc € Lc by erasing c at the end. This may
be done by using rules z;#c$w;#e. Conditions a) and b) guarantee the consistence
of obtained words because both resulting words must belong to L or Le.

Example 3.2.1.

Languages a* + a*b and a* + ba* are examples, which confirm the conjecture
above. For the first language it is sufficient to take ¢ = 1, w; = a and z; = ¢ in
order to satisfy both conditions above. The rule e#b$a#£e then permits to produce
a* from a*b. We note that the language a*b may be produced by an H system
based on 2-splicing (Theorem 3.2.1).

3.2. EXAMPLES OF CLASSES OF SPLICING LANGUAGES 31

Example 3.2.2.

Let us consider the regular language L recognised by the following finite au-
tomata:

b b
YYD ¢
If we take i =2 and 21 = a, 20 = b, w1 = ababa, ws = abbb, then both previ-
ous conditions are satisfied. In this case the rules a#c$ababa#e and b#c$abbb#e

permit to produce L from Lc. We note that Lc may be generated by an H system
based on 2-splicing (Theorem 3.2.1).

Example 3.2.3.

Let us consider the regular language L recognised by the following finite au-
tomata:

—O-0 00

In this case i = 4 and the following 4 rules ba#c$ababa#te, aa#c$abbb#e,
ab#c$abbbte and bb#cSabbb#e satisfy both previous conditions. Therefore, they
permit to produce L from Lc. We note that Lc may be generated by an H system
based on 2-splicing (Theorem 3.2.1).

3.2.2 Classes of 1-splicing languages that cannot be 2-splicing lan-
guages

The next proposition shows a class of regular languages which cannot be 2-splicing
languages.

Proposition 3.2.4. Let L C V* be a regular language and c,d ¢ V. Then, the
language L = L + cL + Ld cannot be a 2-splicing language.

Proof. We shall prove this result by contradiction. We suppose that there is an H
system based on 2-splicing S = (V, A, R) such that L(S) = £. We consider any rule
r € R and we show that using this rule we obtain either a word which does not
belong to £ as it will contain two occurrences of letters from V', where V' = {¢, d},
or both resulting words will contain one occurrence of c or d, 4.e., we cannot produce
words from L by using this rule. We also notice the closure property of £L: £ = o2(L)
where o is the H scheme (V| R).

Now let us consider a rule r = ui#usbus#us € R and let z = ziujuswo,
Y = Y1usUqlye, W1 = T1UIU4Y2, Wa = Y1usueTo be such that we can have the following
application of r: (z,y) Fr (w1, w2).

It is clear that |ujue|ys < 1 and |uzug|ys < 1. We have the following cases with
respect to the number of ¢ and d in the components u; of the rule r, 1 <1¢ < 4:

1. |uilyr = 0. We obtain a contradiction if we take z in cL and y in Ld, as w;
will contain ¢ and d in the same time.

32 CHAPTER 3. 1-SPLICING VS 2-SPLICING

2. |ujuglys = 0 and usuy € Fact(cL). We have two subcases:

(a) ug # e. If we take z in Ld and y in cL, then we obtain that |ws|y = 2,
which is a contradiction.

(b) ug = e. If we take x and y in cL, we have a contradiction, as the resulting
word wy will contain two letters c.

3. We can reason in a similar way for other combinations for which one of sites
contain a letter from V’ and another one does not contain any letter of V.

4. uyug € Fact(cL) and uzuy € Fact(cL). We have 3 subcases:

(a) ug =eand uy; # ¢ (or uy = ¢ and ug #). If we take x and y in cL, then
we obtain a resulting word containing two occurrences of c.

(b) uy,us3 = €. Both resulting words are identical to the initial ones.

(¢) w1, us # €. Both resulting words belong to cL.
We see that we cannot produce a word from L by using rules of last two
types.

5. We can reason in a similar manner for the case when ujus € Fact(Ld) and
ugug € Fact(Ld).

6. ujug € Fact(cL) and usuy € Fact(Ld). We have 4 subcases:

(a) u1,uq #e. We obtain a contradiction if we take x in ¢L and y in Ld, as
wi contains both ¢ and d.

(b) uy # e,us = €. We obtain that |w;|. =1 and |wa|g = 1.

(c) w1 =e,uq # . We obtain that |w;|q =1 and |wa|. = 1.
We see that we cannot produce a word from L by using rules of last two
types.

(d) wi,uqs = €. A contradiction is obtained if we take = in ¢L and y in Ld,
as the resulting word ws contains both ¢ and d.

Shortly speaking, we have rules of two types. Rules of the first type produce
words having one occurrence of ¢ or d. Consequently, these words cannot belong to
L. If we suppose that we can generate L by using rules of another type, then we
can show for each rule of this type an example of words such that by applying this
rule to them we will produce a word having two occurrences of letters from V’. This
means that the corresponding word does not belong to £. But this contradicts to
the fact that £ is closed with respect to the splicing operation. Consequently, we
obtain a contradiction with the fact that £ = L + ¢L 4 Ld is a 2-splicing language.

O

We can easily derive the same result in the case when |V'| =1, i.e., ¢ = d.

3.2. EXAMPLES OF CLASSES OF SPLICING LANGUAGES 33

Corollary 3.2.5. Let L C V* be a regular language and ¢ € V. Then, the language
L' =L+ cL + Lec cannot be a 2-splicing language.

The following theorems show that the languages above belong to the family
H{(FIN,FIN). This means that they are in H(FIN,FIN)\ Hy(FIN,FIN).

Theorem 3.2.6. Let L C V* be a reqular language and ¢, d & V. Then, the language
L=L+cL+ Ldisin H(FIN,FIN)\ Hy(FIN,FIN).

Proof. Proposition 3.2.4 gives us that the language £ = L 4 ¢L + Ld cannot be in
Hy(FIN,FIN). Now it is enough to show that £ is in Hi(FIN, FIN). Since cis a
constant for ¢L and since d is a constant for Ld, cL and Ld are 2-splicing languages,
see Theorem 3.2.1, and, consequently, 1-splicing languages, see Proposition 3.1.2.
Let S. = (V U {c}, A, R¢) be the H system which generates cL, i.e., L(S.) = cL,
and let Sy = (VU{d}, A4, Rq) be the H system which generates Ld, i.e. L(Sy) = Ld.
The language cL + Ld is a 2-splicing language as well, see Theorem 3.2.1. We affirm
that the system S = (V U {¢,d}, A. U Ay, R. U Ry U {r}), where r = e#d$d#-e,
generates £, i.e. £ = L(S). We note that we can also use the rule r = e#cSc#e.
Indeed, we can generate cL and Ld by using rules from R, and Ry. Finally, the rule
r = e#d$d#e which may be applied to a pair of words from Ld only, permits to
generate words from L by 1-splicing. We note that the obtained system S is based
on 1-splicing, since r cannot be used to perform a 2-splicing. O

The previous result remain true if we take £ = L + ¢L + Lc. More exactly,
we observe that the proof that £L = L + cL + Ld is a 1-splicing language uses the
hypothesis that ¢ and d are two constants for £. From the other side, it is possible
to show that £’ = L+ cL+ Lc is a 1-splicing language because the sets {ca | a € V'}
and {ac | a € V} are two finite sets of constants for £’. In this case, in order to
generate L we can use the set of rules r, = a#c$ac#e, respectively r, = e#tca$c#a,
for all @ € V in order to generate L. Such a rule r, is applied to two words from
Lc, respectively cL, and produce a word from L.

Theorem 3.2.7. Let L C V* be a reqular language and ¢ ¢ V. Then the language
L = L+ LcL cannot be a 2-splicing language.

Proof. We shall prove this result by contradiction. We suppose that there is an H
system based on 2-splicing S = (V, A, R) such that L(S) = £. We consider any
rule r € R and we show that using this rule we obtain either a word which does
not belong to £ as it will contain two occurrences of ¢, or both resulting words will
contain one occurrence of ¢. This means that we cannot produce words from L by
using this rule. We also notice the closure property of £: £ = o2(L) where o is the
H scheme (V| R).

Now let us consider a rule r = uj#usSus#us € R and let x = ziujuszo,
Y = Y1UsusY2, W1 = T1UIULY2, W2 = Yruzusxe such that we can have the following
application of r: (z,y) b, (w1, ws).

It is clear that |ujusl. < 1 and |uguglc < 1. Therefore, we have the following
cases with respect to the number of ¢ in components wu; of the rule r, 1 <17 < 4:

34 CHAPTER 3. 1-SPLICING VS 2-SPLICING

1 Juge=0,i=1,...,4.
We obtain a contradiction if we take z,y such that |z1|. = |y2|. = 1, because
|w1|c = 2.

We affirm that it is possible to find such x and y because of the form of L.
More precisely, if we can apply 7 to z and to y and if |1 |, = 0, then necessarily
r = T1uiusw’ cw”. Since riujusw’ € L, there is a word ' = wzcriujusw’ €
LeL having |#}|. = |wsczi|. = 1. Then the rule 7 may be applied to 2’ and to
Y.

2. |uile = |ugle = 0 and |ugugl. = 1

(a) |usgle = 1 (Jugle = 0): if we take x such that |za|. = 1, we obtain a
contradiction, as |wa|. = 2.

(b) |ugle = 0 (Juale = 1): if we take x such that |z1|. = 1, we obtain a
contradiction again, as this time |w;|. = 2.

2’. Similarly, we obtain a contradiction in the case when |ug|. = |u4l. = 0 and
then |ujus|. = 1.

3. |uile =1 (Juz|lc = 0 and |uzu4|. = 1). We have two subcases:

(a) |usle =1 (Jugle = 0): then |wi|. = |wa]. = 1, and we cannot produce a
word in L using this rule.

(b) |ualec =1 (Juslc = 0): we have a contradiction, as |wi|. = 2.
3. Similarly if |uzl. =1 (Jui|c = 0 and |uguy|. = 1).

Shortly, we have rules of two types. Rules of the first type produce words having
one occurrence of c. Therefore, these words cannot belong to L. If we suppose that
we can generate L by using rules of another type, then we can present for each rule
of this type an example of words such that by applying this rule to them we will
produce a word having two occurrences of ¢. This means that the corresponding
word does not belong to £. But this contradicts the fact that £ is closed with
respect to the splicing operation. Consequently, we obtain a contradiction with the
fact that £ = L + LcL is a 2-splicing language.

O

We do not know if the above language is a 1-splicing language, but we suppose
that it is the case.

Conjecture 3.2.2. Let L C V* be aregular language and ¢ € V. Then the language
L+ LeLisin Hi(FIN,FIN), but not in Hy(FIN,FIN).

One of the possibilities to solve this conjecture, i.e., whether the language L+ LcL
isin Hy(FIN, FIN), is directly related to the solution proposed for Conjecture 3.2.1
whether L+ Lc € Ho(FIN, FIN). We recall that Conjecture 3.2.1 is true if we can

3.2. EXAMPLES OF CLASSES OF SPLICING LANGUAGES 35

find z; € V* and w; € L such that for all xw;y in L the following two conditions are
satisfied:

a) zw; € L,

b)Vwe L:w=uwz = wy=wzy¢c L.

In our case, rules z;#c$cw;#e permit to produce L from LcL. The motivation
of this assertion is the same as for Conjecture 3.2.1, but in this case the problem is
even simpler as condition a) is always true.

Example 3.2.4.

L =a*+a*ba* € H(FIN,FIN)\ Hy(FIN, FIN).

From Theorem 3.2.7 we obtain that £ ¢ Ho(FIN,FIN). Now we use the
previous remark and put w; = a and z; = €. It is easy to see that condition b)
is satisfied. The rule e#bSba#te permits to generate a* from a*ba*. To finish the
proof we note that a*ba* is a 2-splicing language and, consequently, a 1-splicing
language, see Theorem 3.2.1.

Example 3.2.5.

If we consider the language L from example 3.2.2, we obtain immediately that
L + LcL is a 1-splicing language. The same result holds for the language L from
example 3.2.3.

3.2.3 Examples of classes of regular languages that are not 1-
splicing languages

We present in this section a class of regular languages which cannot be 1-splicing
languages. This class is constructed from the language cLe, LCV* c & V.

Theorem 3.2.8. Let L C V* be a regular language and ¢ ¢ V. Then, the language
L = L+ cLc cannot be a 1-splicing language.

Proof. We shall prove this result by contradiction. We suppose that there is an H
system based on 1-splicing S = (V, A, R) such that L(S) = £. We consider any
rule 7 of R and we show that using this rule we obtain either a word which does
not belong to £ as it will contain one occurrence of ¢, or both resulting words will
contain two occurrences of c. This means that we cannot produce words from L by
using this rule. We also notice the closure property of £: £ = o1(L) where o is the
H scheme (V, R).

Now let us consider a rule r = u;#HuoSus#us € R and let x = ziuquszs € L
and y = yuguqays € L. We denote by w the result of the application of r to these
two words.

We note that |ujus|. < 2 et |uguyg|. < 2. Therefore, we have to consider only
the cases when every |u;|c, i = 1...4, varies between 0 and 2. We can throw away
cases where |u1]e > 0 or |ug|. > 0, because in these cases we cannot produce a word
from L.

Then we fix |u1|. = |u4|. = 0 and we consider 0 < |ug|,, |us|. < 2. This gives us
9 cases. We number cases by two digits; the first digit indicates the number of ¢ in
uz and the second digit indicates the number of ¢ in us.

36 CHAPTER 3. 1-SPLICING VS 2-SPLICING

Case 00: (i.e., |ug|c =0= |ug|.). Then there are 2’,y’ in L such that (cx’c,y’) b, w
and |w|. = 1, therefore w ¢ L.

Case 01: (i.e., |ug|c = 0 et |us|. = 1). We take an y which contains the site usuy
of the rule r.
If ugys # e, then there is 2’ in L such that (2/,y) F w and |w|, = 1 as

|ugyale = 1.
If uyys = ¢, then there is 2’ in L such that (cz'c,y) b, w as w = zquy and
|lwl|. = 1.

In both cases w & L.

Case 02: (i.e., ug = €). Then there is 2’ in L such that (cz’c,y) b, w and |w|. =1
as w = riuq. Hence, w & L.

Case 10: This case is similar to case 01. We take 3 in L and we choose 3y’ or cy'c
depending on z and we obtain that |w|. =1, i.e., w & L.

Case 11: we have 4 subcases (z,y € L):
a) T1u] = ugys = €: we obtain w = €.

b) ziu, uays # €: as |usle = |uzlc = 1 we obtain that |zju1|. = |z1]. = 1 and
|uayale = |y2|c = 1. Then, |w|. = 2 and w cannot be in L.

c,d) either zju; = ¢, or ugys = €. If x1u; = €, we have w = uqys and |w|. = 1.
If ugys = &, we have w = xquq et |w|. = 1. In both cases w & L.

Case 12: (i.e., ug = €). Then there is an 2’ in L such that (cz’c,y) b, w and either
w=c¢ (if zyu; =¢), or |w|. = 1.

Case 20: (i.e., uy = £). Similarly to case 02 we can find an ¢y’ in L such that
(z,cy'c) Fp w and |w|. = 1.

Case 21: (i.e., uy = €). Similarly to case 12, we obtain that there is an y’ in L
such that (z,cy’c) b, w and either w = ¢ (if ugys =€), or |w|. = 1.

Case 22: We produce &.

Shortly speaking, rules are of three types. Rules of the first type permit to
produce only ¢; rules of the second type permit to obtain words w such that |w|. = 2.
Consequently, these words cannot belong to L. Rules of the third type permit to
obtain different words, but if we suppose that we can generate L by using rules of
this type, then we can find for each rule of this type an example of words from L
and cLc such that by applying this rule to them we will produce a word having
one occurrence of c¢. This means that the corresponding word does not belong to L.
This contradicts the fact that £ is closed under splicing. Consequently, we obtain a
contradiction with the fact that £ = L 4 cLc is 1-splicing language.

O

3.3. CONCLUSIONS 37

3.3 Conclusions

We introduced in this chapter the splicing operation and the H systems. We com-
pared the generative power of H systems based on 1-splicing and of H systems based
on 2-splicing and we have shown that the set H(FIN,FIN)\ Ho(FIN,FIN) is
not empty. The languages which we used to obtain this result are constructed from
constant languages where the constant is defined by a letter ¢ € V. We note that
we can replace this letter by words which are constants for the considered language.
Even if these languages seem to be more interesting, their underlying structure is
identical to the structure of languages presented before.

H systems introduced in this chapter are very interesting but their computational
power is not very big. This is why we shall enrich them with control mechanisms
and distribution of computing. This will permit them to reach the power of Turing
machines. We shall progressively complicate the obtained systems and the next
chapter will present a first extension of Head splicing systems.

38

CHAPTER 3. 1-SPLICING VS 2-SPLICING

Chapter 4

Time-varying distributed H
systems

In this chapter we introduce an extension of H systems: extended H systems. We
show that these systems are a little more powerful that H systems and that they
can generate the family of regular languages when a finite set of axioms and rules
is used or the family of recursively enumerable languages if a regular set of rules
is used. We also describe the “rotate-and-simulate” method which is often used in
the H systems area. This method permits to simulate an arbitrary grammar, by
consequent, it can be used to prove a big computational power of some systems. We
also introduce another extension of H systems: time varying distributed H systems,
or TVDH systems. These systems are based on the biological observation that en-
zymes, simulated by splicing rules, are not accessible all the time, but only at certain
moments. We show that two sets of rules which we call later components suffice to
generate all recursively enumerable languages by simulating a type-0 grammar. The
proof of this result uses the “rotate-and-simulate” method. After that we show that
TVDH systems with one component are able to do universal computations. At the
end of the chapter we show several examples obtained with the help of a computer
program developed during the master thesis of the author. More exactly, we con-
trolled several published articles on TVDH systems and we found with the help of
our software that they contain errors. We also show how it is possible to correct
these errors in some cases.

4.1 Extended H systems

4.1.1 Definitions and results

Definition 4.1.1. An extended H system is the quadruplet v = (V, T, A, R), where
V is a finite alphabet, T' C V is the terminal alphabet, A C V* is a finite set of
initial words, called axioms, and R is a set of splicing rules.

The language generated by the extended H system + is:

39

40 CHAPTER 4. TIME-VARYING DISTRIBUTED H SYSTEMS

L(v) = o*(L)NT*, where 0 = (V, R).

So, the language generated by an extended H system v consists of all words over
the terminal alphabet T which are generated by the H system H = (V, A, R).

We denote by EH(Fi,Fs) the family of languages generated by extended H
systems having the set of axioms which belongs to the family F; and having the set
of rules which belongs to the family F».

Extended H systems are a little more powerful than ordinary H systems.

Theorem 4.1.1. REG C EH(FIN,FIN)

Proof. We present here the proof given in [44].

Let L C T* be a regular language and let G = (N, T, S, P) be the regular
grammar which generates it.

We construct the following extended H system:

v = (NUTU{Z},T,AlUAQUAg,RlLJRQ),

where

Ay ={S},
Ay ={ZaY | X - aY € PLX,Y € Nyae T},
As={ZZa| X -ac P, X €N,aecT},

e | X
Rl—{ AT |X—>aY€P,X,Y€N,a€T},

e | X
Rg_{ 77 a |X—>aeP,XeN,aeT}.

If we splice the word Zz X using a rule from Rj, then the result will be of form
ZzxaY and ZX. It is easy to see that starting from these words we cannot obtain
a terminal word. Indeed, we cannot eliminate the symbol Z if these words are used
as a first term of splicing. Moreover, no rule is applicable to the word Zz X having
|z| # 1, if we try to use it as a second term of splicing. By consequent, the only
possibility to obtain a terminal word is to start from S, use rules from R; and end
with a rule from Rs. Thus, we can see that the first term of splicing is the one
obtained by the previous splicing and the second term of splicing belongs to As,
or As at the last step. This corresponds to a derivation in G. So, we obtain that
L(y) = L(G) = L. O

It is clear that the inverse inclusion holds because the family of regular languages
is closed with respect to intersection.

4.1.2 The “rotate-and-simulate” method

Now it suffice to make a small step further in our framework in order to obtain a
big computational power.

4.1. EXTENDED H SYSTEMS 41

Theorem 4.1.2. RE C EH(Fin, REG)

Proof. We present here the proof given in [44].
Let G = (N, T, S, P) be a type-0 grammar. Let us consider U = N UT U {B},
where B is a new symbol. We construct the following extended H system

/-y = (V’ T’ A? R)7

where

V=NUTU{X,X',B,Y,ZYU{Ya | a €U},

A= {XBSY, ZY,XZ}
U{ZvY |u— v e P}
U{ZY,, X'aZ |a e U},

and R contains the following groups of rules:

Stmulate : 1. Xw#HuYS$Z#vY, foru—ve PweU*,
Rotate : 2. Xw#HaY$Z#Y,, foraecUwe U*,
3. X a#Z$X#wY,, foraecUweU*,
4. X'w#Y,$Z#Y, for ac U,w e U*,
5. X#Z$X'#wY, for w € U*,
Terminate : 6. e#ZY$XBH#wY, forw e T*,
7. cHYSX ZHe.

We claim that L(y) = L(G).

Let 0 = (V, R). We examine the functioning of o, more exactly the possibilities
to obtain a word in 7.

No string of A is in T™. All rules in R involve a string containing the symbol Z,
but this symbol will not appear in the first string produced by splicing. Moreover,
the second result of the splicing will contain Z and it can match only the site of
rule 7. But it is easy to see that we cannot obtain a terminal string in this case.
Therefore, at each step we have to splice a word from A with the string produced
at a previous step, excepting the first step when the axiom X BSY is used.

The symbol B marks the beginning of sentential forms of G simulated by o.

By rules in group 1 we can simulate rules of P. Rules in groups 2 — 5 move
symbols from the right hand end of the current string to its left hand end. This
permits to simulate rules of P at the right hand end of the string produced by o.
However, because B is always present and marks the place where the string of G
begins, we know at each moment which is that string. Namely, if the current string
in o is of the form (jw;BwsyBs, for some markers 31, 32 of type X, X', Y,Y, with
a €U, and wy,ws € (N UT)*, then wow, is a sentential form of G.

We start from X BSY', hence from the axiom of GG, marked at the left hand end
with B and bracketed by X,Y.

Let us see how the rules 2-5 work. Suppose we take a string XwaY’, for some
a € U, we U*. By arule of type 2 we get:

42 CHAPTER 4. TIME-VARYING DISTRIBUTED H SYSTEMS

(Xwl|aY, Z|Y,) b (XwYy, ZaY).

The symbol Y, memorises the fact that o was erased from the right hand end
of wa. Only a rule of type 3 can be applied to XwY,:

(X'a|Z, X |wYs) F (X awYy, X 7).

We note that the same symbol « removed at the previous step is now added in
front of w. Again there is only one way to continue, namely by using a rule of type
4. We get:

(X aw|Ya, ZIY) F (X awY, ZYy).

If we use now a rule of type 7, removing Y, then X’ (and B) can never be
removed, so the string cannot be turned to a terminal one. We have to use a rule
of type 5:

(X|Z, X'lowY) F (XawY, X'Z).

We have started from XwaY and we obtained X awY . We can iterate these steps
as long as we want, so any circular permutation of the string between X and Y can
be produced. Moreover, what we obtain are exactly the circular permutations and
nothing more (for instance, at every step we still have one and only one occurrence
of B).

To every string XwY we can also apply a rule of type 1, providing w ends with
the left hand member of a rule in P. Any rule of P can be simulated in this way,
at any place we want in the corresponding sentential form of G, by preparing the
string as above, with the help of rules of groups 2-5.

Consequently, for every sentential form w of G there is a string X BwY’, produced
by o, and, conversely, if Xw; Bw2Y is produced by o, then wow; is a sentential form
of G.

The only way to remove the symbols which are not in 7" from the strings produced
by o is to use rules in groups 6 and 7. More precisely, the symbols X B can be
removed only in the following conditions:

(1) Y is present (hence the work is blocked if we use first rule 7, removing Y:
the string cannot participate in any further splicing, and it is not terminal).

(2) The current string bracketed by X,Y and it consists of terminal symbols
only.

(3) the symbol B is just after X.

In such a case we can remove X B and after that Y, and what we obtain is a
string in 7*. From the previous discussion, it is clear that such a string is in L(G),
hence L(vy) C L(G). Conversely, each string in L(G) can be produced in this way,
hence L(G) C L(v). This gives the equality L(G) = L(v), which completes the
proof. O

4.2. TVDH SYSTEMS 43

In what follows we shall use many variants of these technique called “rotate-and-
simulate”. This technique originating from the field of rewriting was adapted by Gh.
Paun in [38] for the case of H systems.

4.2 TVDH systems

The approach above is purely mathematic as it uses infinite objects. It is difficult
to see for the moment its utility from biological point of view. Below we present
another model which permits to have a big computational power while keeping
the finite character of the system. In order to do this it suffices to introduce a
distribution in the computation as well as a control procedure.

Definition 4.2.1. A time-varying distributed H system, or TVDH system, of degree
n is the following n + 3-tuple

D=(V,T,A,R1,Ry,...,Ry),

where V is an alphabet, T' C V is the terminal alphabet, A C V* is a finite set of
axioms and R;, 1 <7 < n, called components, are finite sets of splicing rules.

At each moment k =n - j + 4, where j > 0, 1 < ¢ < n, only rules of component
R; are used to splice current words. More precisely, we define

L= A,
Liyi =o0i(Lg),fori=k—1 (modn)+1, k>1,1<i<n, g,=(V,R;).

Indeed, at each step k the current words, Ly, are spliced one time using rules of
the component R;, i =k — 1 (mod n) + 1 and only the result of this splicing forms
the next set of words, Lgy1. All other words are eliminated.

We say that the component R; of a TVDH system rejects the word w, if w cannot
enter any rule of R;. In this case we write w Tgr,. We can omit R; if the context
permits us to do so. In particular, w is rejected by R; if w cannot match any rule
from R;.

The language generated by a TVDH system D consists of all words over the
terminal alphabet produced at some step of computation.

def *
L(D) ™ (Upsr L) N T
We denote by VDH, the family of languages generated by TVDH systems of
degree at most n.

Example 4.2.1.
Let us consider the following TVDH system:

D= (V,T, A, R), where V =T = {a,b,c}, A = {cab}, R = {r = ¢

a
al|b |

We have L; = {cab}. We can apply 7 to cab and to itself: (c|ab, calb) F,
(cb,caab). This gives us Ly = {cb,caab}. Now we can apply r to caab and
to itself: (c|aab, caalb) b, (cb,caaaad), which gives Ly = {cb, caaaab}. We
can easily see that L, = {cb, ca2kb}, hence the language generated by D is:
L(D) = {cb,ca® b}, n > 0 which is not a context-free language.

44 CHAPTER 4. TIME-VARYING DISTRIBUTED H SYSTEMS

4.3 The computational power of TVDH systems

We can see that TVDH systems are quite powerful, even with one component. In this
chapter we show that two components suffice in order to reach the computational
power of Turing machines. We remark that the same result may be obtained with
only one component and we present this proof in Chapter 6, see Theorem 6.3.1.

Theorem 4.3.1. Let G = (N, T, P,S) be any formal grammar. Then, there is a
TVDH system Dg = (V,T, A, R1, R2) of degree 2 which simulates G and L(G) =
L(Dg).

Proof.

Definition of the system

We define D = (V, T, A, Ry, Ry) as follows.

Let NUT U{B} ={a1,a2,...,an} (ap, = B) and B¢ NUT.

In what follows we assume that: 1 <i<n,1<j<n-1,2<k<nand
ae NUTU{B}.

The alphabet V is defined by V=NUTU{B}U{X,Y, Z, Z', Z" X;, Y;, Xj’, Y:i’, XJ.”7
Yj”,X/,Y,, X"y 01702’D17D2}

The terminal alphabet T is the same as for the grammar G.

Axioms are defined by: A ={XSBY} U {ZY;, ZYj’,ZYj”,X’Z, X"Z, 7Y,
Xja;Z, XJ.’Z, Xj”Z, ZY|ZY" X Z,X;Z,C1Z, D1, Z"Ca, Do} U {ZvYj,3u — va; € P}.

The components are defined as follows.
Component R;:

e |uY) ;€ |ajuY
1.1: AL Ju — vay € P; 1.1 AT Ju—e€eP
. aY Yk ca|Yy
1.2: ADEE 1.3: Z V7 ; 1.4: Z—’—YB,, ;
/ "
1.5:%%; 1.6 :))((,, ; : 1.7:%5; :
a | BY” a|Y! | 7
L8 : i ; 1.9.7’—#, L10: — 55—

Component Ra:

X!
,k a ;o 2.3 i a ;o 24 a Yl, ;
Xa1 Xk_1 Z X | Z Z|Y
al|Y’ X" a X" a Z" | Cy
4’?7 . —’—, 2.7: R 2.8: X, (7 2.9: Dy 2

Components Ry and Ry contain also following rules:

4.3. THE COMPUTATIONAL POWER OF TVDH SYSTEMS 45

%’% for any axiom « € A, except XSBY.

We claim that L(D¢g) = L(G).

We shall prove this assertion in the following way. First we show how we can
simulate the derivations of the formal grammar G. In this way we prove that L(G) C
L(D¢). In the same time we consider all other possible evolutions and we show that
they do not lead to a terminal string. By consequent our assertion will be proved.

Our simulation is based on the “rotate-and-simulate” method, see Section 4.1.2.
We use a technique similar to the one used in [23, 40, 44]. We start with the word
Xwa;Y in component Ry. After the application of rule 1.2, component Rs receives
XwY;. In Ry the rule 2.1 is applied and Ry receives words Xja;wY; (1 < j <
n). After that point the system works in a cycle where indices i and j decrease
simultaneously. Words for which j # ¢ are eliminated and only words of type
Xia;wY7 remain. After that we obtain the word Xa;wY’, so we rotated the word
Xwa;Y. If a;w = a;w’B and a;w’ € T*, then this word which belongs to the result
is also produced.

The flow-chart of the computation

The computation in Dg follows the flow-chart shown in the Fig. 4.1. The vertices
of the flow-chart show a configuration of molecules during the computation. We
enumerate all configurations and their numbers are in the upper right corner. In
configurations, the symbol w is treated as a variable, and it may have different values
in different configurations. For example, if in configuration 1 the symbol w is equal
to w'a; then in configuration 2 it may have the value w’. We shall show that the
computation follows the flow-chart from the Fig. 4.1, s.e. all molecules produced in
one configuration will be eliminated except molecules from the next configuration.

We note that the rule 1.10 permits to produce the word Z’ starting from axioms
C1Z" and Dy, hence this word will appear in the second component. Similarly, the
rule 2.9 permits to produce the word Z” which will appear in the first component.
This trick is used in order to avoid an erroneous computation. More details about
this may be found in subsection 4.5.1.

Rotation

Let us consider the word Xwa;Y (w € (NUT U{B})*), 1 <i < n. We are in
configuration 1. We shall show now how the rotation of wa; is performed.
(Xw|a;Y, Z|Y;) F12 (XwY;, Za;Y 7).
The word Za;Y cannot enter any rule of Rs, so it is eliminated.
Now we are in configuration 2.
(X”LUY;,X]CCLMZ) |—2_1 (Xkakai,XZ), 1 < i, k S n.
The word X Z is an axiom.
If 7 = 1, we may also have the following computation:

46 CHAPTER 4. TIME-VARYING DISTRIBUTED H SYSTEMS

7

W X//w X//Wyl/
8/ \ 6
XwYy" X"wY'!
l 1 T 5
début =——= XwY X'wY'
| !
XwY; X'wy;
\ 3/
XjWYQ
13/ \ 9
X wYi X;wY;,
T 12 l 10
X7 wY/, X wY/,

11

X j/'—lw}/;lil
Figure 4.1: The flow-chart of the computation

(Xw|Y1, Z|Y') bFog (XwY' 1,2Y7).
The word ZY; is an axiom and the word XwY” is eliminated.

We are in configuration 3. There are 4 possible cases:

a) Xja,wYr; b) Xia,wYy; ¢) Xja,wY;; d) XiaswYi;i,j >1,1<s<n

a) XjaswYq,j > 1.

XjaswYy 7.

The word X aswY7 cannot enter a rule of Ry, therefore it is eliminated.

b) X;aswYj,i > 1.

We have now two possibilities:

() (XraswlY;, Z|Y]) Fis (XraswY] 1, 2Y)).
The word ZY; is an axiom. The word XjaswY; ; cannot enter any rule of Ry, so it
is eliminated.

(li) (X1|CLS’LUY;',X/|Z) |_1.5 (X’aSin T,X1Z)
The word X7 is an axiom. The word X’aswY; cannot enter any rule of Rs, hence
it is eliminated.

In both cases the computation does not produce any new words.

C) XjaSWYi,i,j > 1.

(Xjas]Vi, ZIY)) rs (XjawY],, 2Y;).

4.3. THE COMPUTATIONAL POWER OF TVDH SYSTEMS 47

The word ZY; is an axiom.

We are in configuration 9.

(Xj|asw}/i/71’X‘;fl|Z) F2.2 (X]’;lais;’fl,XjZ).
The word X;Z is an axiom.

We are in configuration 10.

(X _yaswlYy, ZIY) Fra (X)_qaswYy, ZY]).
The word ZY] | is an axiom.

We are in configuration 11.
(X qlaswY” 1, X7 4|2) bos (X7 _qaswY!”y, X} 1 Z).
The word X]’-_lZ is an axiom.

We are in configuration 12.

(Xj/‘/_lasw|yi,ilv Z’}/z—l) |_1.9 (X]/-,_ICLS'in_l, ZYZ,il)
The word ZY;” | is an axiom.

We are in configuration 13.

Now there are two possible continuations.

(1) (Xj_qasw|Y1, Z|Y') boa (X7 _qaswY' 1,2Y1).
The word ZY; is an axiom and the word X j’»’_laSwY’ is eliminated.

(li) (X]’~’_1|aisi_1,Xj_1]Z) |_2.8 (Xj_laSWYi_l,X]//_1Z).
The word X]’LlZ is an axiom. We note that we arrived again in configuration 1. It
is easy to see that indices of X and Y were decremented simultaneously. We can
continue in this way until one of indices will become 1, which represent one of cases
(a), (b) or (d).

d) Xlaisl.

(Xl\aisl, X/|Z) l—1.5 (X’aisl, XlZ)
The word X717 is an axiom.

We are in configuration 4.
(X'asw|Y1, Z|Y") oy (X aswY', ZY7).
The word ZY7 is an axiom.

We are in configuration 5.

(X'|aswY', X" Z) 16 (X aswY', X' 7).
The word X’Z is an axiom.

We are in configuration 6.

We have now three possibilities:

(1) (X"|aswY', X|Z) bog (XaswY' 1,X" 7).
The word X”Z is an axiom. The word XaswY’ which cannot enter any rule of Ry
is eliminated.

(ii) (X"|aswY”,|Z") bo7 (aswY' 1,X"Z' 7).
The words aswY’ and X”Z' cannot enter any rule of Ry, therefore they are elimi-
nated.

(iii) (X"asw|Y', Z|Y") bFo5 (X" aswY"”, ZY").
The word ZY” is an axiom.

We are in configuration 7.

48 CHAPTER 4. TIME-VARYING DISTRIBUTED H SYSTEMS

*) (X"asw|Y", Z|Y) F17 (X" aswY, ZY").
The word ZY" is an axiom.

We are in configuration 8.

(%) (X"|aswY, X|Z) Fag (XaswY, X" Z).
The word X”Z is an axiom.

We arrived in configuration 1, so we rotated as. It was possible to apply rules
1.8 and 2.7 in cases marked by (*) and (**), but these application will be discussed
later.

Simulation of productions of the grammar

If there is a production u — va; (or v — ¢) and a word Xw'uY (Xw”a;uY’), then
we can apply the rule 1.1 (1.1').

(X' |uY, Z|vY;) F11 (Xw'vY;, ZuY 7).
The word ZuY cannot enter any rule of Ra, so it is eliminated.

(Xw"|a;uY, Z|Y;) b1 (Xw"Y;, ZauY 7).
The word Za;uY which cannot enter any rule of Ry is eliminated.

After that point, the system works as in the case of the rotation. Consequently,
we simulate the application of the rule u — va; (u — ¢) of G.

Obtention of the result

If we have the symbol B at the end of the word in the case (*), then we can apply
the rule 1.8:

(X"agw!|BY", 2")) b5 (X"asw/, 2" BY" 1).
The word Z”"BY" is eliminated.

(X" asw',|Z") For (asw' 1, X"Z" 7).
The words X”Z'" and asw’ are eliminated. If the word asw’ € T*, the asw’ belongs
to the result of the computation.

It was possible to apply the rule 2.6:

(X"asw', X|Z) Fag (Xasw' 1,X"Z).
The word X”Z is an axiom and Xa.w' is eliminated.

We observe that, by definition, we have at each step an unlimited number of
copies of each word. In the case above both applications are made in parallel and
one of these applications produces a result of the computation, while the other one
does not produce any new words.

Let us consider now the case (**). We can apply the rule 2.7:

(X" aswY,|Z") For (aswY, X"Z' 7).

The word X”Z’ is eliminated.

(asw'|arY, Z|Ye) F11, 117 ou 12 (asw'Ys, Za,Y 1), 1 <t < n.

The word Za;Y is eliminated.

If t # 1, then the word asw'Y; is eliminated.
fe=1,

4.4. A “SMALL” UNIVERSAL TVDH SYSTEM 49

(CLS’LU/’Yi, Z|Y’) |_2.4 (asw’Y’ T, ZYl)
The word ZY] is an axiom and the word asw’Y” is eliminated.
Therefore, this computation does not produce any new word.

Other computations with axioms

We may have the following computations between axioms but they do not lead to
new words.

(Z'UD/MZD/ZI_l) I_1.3 (ZU}/Z/_l T7Z}/;)7 2 < { <n.
(X1|alZ, X/‘Z) |—1_5 (X/CLlZ T,XlZ).

(XilaxZ, X}, _1|Z) boo (X _jarZ 1, X 2Z),2 < k < n.
(

ZvlY1, Z|Y") bou (Z0Y' 1, 2Y7).
As we analysed all cases, our proof is complete.

Final remarks

We note that it was possible to use the word C1Z’ instead of Z’ and the word Z”C,
instead of Z” in some places of the computation above. But these applications,
introducing C7 and C5 in the word that is considered do not change the fact of
rejection of that word by the next component.

It is easy to see that by following the flow-chart of the computation we generate
all words of L(G) and, as we considered all possible cases, it is clear that the system
does not produce other words.

O

4.4 A “small” universal TVDH system

We shall show that TVDH systems with one component are not predictable. In order
to do this we show that with one component we can simulate any 2 tag system. Tag
systems were used in the literature in order to obtain Turing machines of a small size,
see [46], that is why the system that we obtained has a very compact description.

We define an input for a TVDH system. An input for the system D is simply a
word w over the alphabet of D. The computation of D on the input w is done by
adding w to axioms and then by evolving D as usual.

Theorem 4.4.1. Let T = (2,V, P) be a tag system and w € V*. Then, there is a
TVDH system D of degree 1, D = (V',V, A, Ry), which given the word LXwY as
input stmulates T on input w, i.e. such that:

1. for any word w on which T halts producing the result w', the system D produce
an unique result w'.

2. for any word w on which T does not halt, the system D computes infinitely
without producing a result.

50 CHAPTER 4. TIME-VARYING DISTRIBUTED H SYSTEMS

Proof.
Let V ={a1,...,ap41} and P ={Py,..., P, }.
In what follows we assume that 1 <i <n and a,b,c € {a1,...,a,}.

We define D as follows.

The alphabet V' is defined by: V' =V U{X,Y,L, X")Y' R, Z}.
Axioms are defined by: A = {LXwY,ZPY,X'E, RY'}.

Rules of Ry are defined as follows:

Main rules:

LXaibc'Q_cY € '3'aYXai‘4' X' la
X |[E ' L [XabE @' ° Z[PBY ' Y ILxX|E’

Additional rules:

5. LX |abE 6 - LX |bE - ZP |Y g ZP | Y’)
" LXa; | bE " LXb| E " R |Y' " R |Y
Rules for the result:

LXanb| ¢ c Y

: 10 : ;
! e |X'E 0 LXan bX'E | e’

Now we shall show how we simulate the computation of 7. In our system we have
a word of the form LXwY which corresponds to the working word w in 7. First,
we cut off the first two symbols of w and we mark by X’ the beginning of the word.
This gives us two molecules: Xa;a;E and X'w'Y, where w = a;ajw’. After that
we glue the first molecule to the end of the second one obtaining X'w'Y Xa;a;E.
Now we can replace the end of this word by a right production which gives us the
word X'w’'P;Y. Finally, we take off the prime from X obtaining LXw'PY. We
can iterate this process that simulates the application of productions of 1. We halt
when the first symbol is a,41. In this case we take off the brackets LX and Y and
we obtain the result.

In what follows we give more details by considering all possible evolutions.

Step 1.

LXab | wY - X'wY
X | E U TLXabE
ZP|Y ZPRY'

R |Y’ 7 RY

Step 2.

XwY | e - X'wY Xa;bE
L | XabE 2 L7 ’
LX |abE LXbE
LXa; | bE > LXaabE T

4.5. CORRECTION OF EXISTENT SYSTEMS 51

7P | Y’ - ZPY
R |Y 8 RY'

Step 3.
X'w |YXabE X'wPY
Z | PY ZYXabET

LX [bE LXE
LXb| E 6 TLXWET ’
ZP|Y ZRY
R |Y’ 7 RY

Step 4.

X' |wPY | LXwPY
LX| E 4 X'E
ZP|Y' ZPY

R |Y 8 TRY

We note that we have simulated one step of computation in 7" and that all non-
desirable molecules were eliminated. We can continue this process until the first
symbol of w became a,41. Since we need four steps in order to simulate one step in
T, this situation arrives when we are at the step number 4k + 1, k > 0. In this case
we can take off the brackets LX and Y obtaining the resulting word:

Step 4k-+1.
LXaniab | wY wY
e |XE 7 LXaybX'E
Step 4k-+2.
w ‘ Y w T

'_
LXa,1bX'E | € 0 I XanbX'EY |
Since we do not have any word of form LXwY, the further computation will
consist in application of rules 7 and 8 without producing a terminal word.
O

4.5 Correction of existent systems

As we said before in Chapter 2, we used a program which permits to simulate TVDH
systems and which was developed during the master thesis of the author. We checked
several articles on TVDH systems which were published and we found that some
of them contain errors. In this section we present the corresponding systems and
we show the errors that they contain as well as corrections that are necessary for
a correct functioning. We found that some errors are common to several authors,
that is why we hope that our correction will permit to avoid them in the future.
Each system which is considered simulates a type-0 grammar G=(V,T, S, P).

4.5.1 Correction of the system TVDH3

We start by the TVDH system presented in [23]. The Fig. 4.2 contains the definition
of this system which we shall call TVDH3.

52 CHAPTER 4. TIME-VARYING DISTRIBUTED H SYSTEMS

Consider the system TVDH3 = (V, T, A, R1, R, R3).

Let NUT U{B} = {ai,az2,...,an} (an = B) and B¢ NUT.
Let i, jand ksuchthat 1 <i<n, 1<j<n—-1,2<k<n.

The alphabet V is defined by V = NUTU{B}U{X,Y, Z, X;,Y;, X, Y], X}, Y/,
X'z, z"}.

Axioms A are defined by A = {XSBY}U {ZvY;,3u : u — va; € P, i €
(1,....n — 1}} U {2Y,,X}2,X'Z, Xia:Z, 2Y], X;2, XZ, ZY], Z2Y', X/Z,
A SVANVAS

Component Ri:

e | uY _) el aY o Xk €
1.1: 7 ’U)/j s H'LL — Vaj; € P, 1.2: 7)/; ; 1.3: ﬁ ;
X | e e | Y/ € | a;uY
1.4: ~ 7 1.5: A —Yi ;0 1.6 7 Y, , dJu—e€P;

Component Ra:

X e el Y X le
2.1.%’7’ 2;2. Z .Y;// Pl 2.3.Tj'77

X'|e X' e
X |z’ e |\ Z

2.4:
Component Rs:

el Y C Xile | e
81—y 3.2 Seamal 33—t

e | Y’ e | BY’
3.4-7 Y 3 .

Note.
Components Ri, R2 and R3 contain also the following rules:

%’% for each axiom «a € A, except XSBY.

Figure 4.2: The system TVDH3

The functioning of the system TVDH3 is not correct. The authors did not
observe the following situation: the application of the rule 2.5 produce the word
X'Z' which is not an axiom and which is not eliminated from the system due to the
rule Z'#e$7'#¢<. After that, by using the rule 2.4, we obtain X Z’. This word used
in the rule 2.1 produces the words X;a;Z’' and X,,a;Z’, where m # 4. Finally, the
rule 2.5 permits to introduce these prefixes in any word. More precisely:

(XY, |Z") b5 (X' Z' wY?).

X'Z" is always present due to the rule Z'#e$72'#e¢.

(X'\Z', X|Z) bou (XZ', X' Z).

Now, the rule 2.1 is applied to X Z’ which is always present and to one of words
XiaiZ:

(X’Z/, Xzaz\Z) |—2.1 (XZ, XzazZ’)

4.5. CORRECTION OF EXISTENT SYSTEMS 53

The words X;a;Z' are always present. Starting from them we can obtain the
words X/ _ja,2"

(Xl-\aiZ’, Xz/71|Z) f—1.3 (XZZ, X;flaiZ’).

If we continue, we can obtain consecutively X! ;a;Z’, X;_1a;Z', and finally
X'a;Z" and Xa; 7.

Now, let X’wY” be a correct evolution. Then the rule 2.5 of the second compo-
nent permits to insert a; in front of w:

(X/]wY’, XaZ]Z’) |—2.5 (AX/Z/7 XCLZ"UJYI),

which is not a correct evolution.

We see that the problem is caused by the word X Z’. In order to solve it, it is
enough to replace the rule 2.4 by the following set of rules:

X’ a; .
<7 <n.
%7’1—1—"

In this case the word XZ’ cannot be produced and the system have a correct
behaviour.

We present below another solution to the problem above and we shall use this
solution in the future. It concerns words that end by Z’, i.e. words of form wZ’.
We note that the wrong functioning of the system TVDH3 is due to the fact that
these words once produced will remain forever because of the rule Z'#e$7Z'#e. We
can replace this rule by the following set of rules:

! !/
%’Z?epq and{ gg,gz : ggz }eRmRmRS.
We also add CZ’ and D to axioms.
In this case, only CZ’ is persistent while all other words which end in Z’ are
eliminated. This solves our problem.

We note that in the system from Theorem 4.3.1 this second approach was used
in order to avoid the same problem as the one discussed in this section.

4.5.2 Correction of the system TVDH4

We continue with the system presented in [35] which we shall call TVDH4. Its
definition is given in the Fig. 4.3.

The functioning of the system TVDH4 is not correct. There are three errors:

1) An error of the same type as in the previous example: the rule 4.2 permits to
obtain the word X(Z/, which is not eliminated. After that, we can obtain as above
X7, Xivi Z},, Xv;Z|, etc. Let us consider now a correct evolution XowY . By using
the rule 4.2 we insert v; in front of w:

(X0|wY, X?)Z|Z[/)) |—4_2 (X()Z(/], Xvti),

which is not a correct evolution.

In order to correct this problem the rule 4.2 must be replaced by the set of rules
Xo#a;$X#72', 1 <i<n.

2) A repeated application of the rule 4.4 produces X, kijj'-, k < j which become
persistent. Now, the rule 4.3 permits to insert Xya;, j # k in front of a word which
leads to an erroneous rotation.

54 CHAPTER 4. TIME-VARYING DISTRIBUTED H SYSTEMS

We suppose that G is in Kuroda normal form. Let N UT U {F} =
{a1,a2,...,an} (tny = F) and F ¢ {NUT}. Let 4, j and s such that 1 <3 <[,
m4+1<j3j<letl<s<m.

Let up — vx € P, n+1 < k < m be the rules without context of P, and let
ur — v € P, m+ 1 < k <[the other rules of P. We denote uy = vr = ai for
1<k<n.

Let us consider the system TVDH4 = (V, T, A, R1, Rz, R3, Ra4).

where

V=NUTU{X,Y,Z,Z' Zo, Zy, F, X0, Yo, Xs, Y3, Y], Zi},

A={XSFY,XZ' ZY, Zy, Zy, X0 Z', ZYo, X, Z', ZY;, Xiv: Z;, ZY}] },

B) E|Y) X0|5) 5|Y¢] 5|Y~'
RI*QU{ll E|Y’12 X0|E713 E|Y2714 |Y;/ I
_ . X|€ 8|Y0 . Xi g
RngU{Q.l. X‘E,zz E‘Yo,z.:a. e E},
_ BEERG e | FY e | uY e | Y
R3—QU{3‘1. Z‘Y , 3.2 ZO‘ = , 3.3 Z‘ Y. , 3.4 Z‘Y;,‘—l
!
u{345: 2%?,, . 3.6 é’gyﬂ ouu]—DE,D,EeN},
J Jj—1
X0|s X0| e X|z—: X €
R4_QU{4.1 X]Z”4'2 . ’26,4.3 6’21,744 X 7 },
et

Figure 4.3: The system TVDH4

In order to solve this problem it suffices to replace rules 4.3 by X#e$X;v;#Z".

3) In this case we have a problem which is similar to case (1), but at the other
end of the word. The rule 3.2 produces the word ZyF'Y{ which exists forever. Once
produced this word introduces errors in the computation:

(Xlw’FYb, Z0|FY()) |—3_2 (Xl’wFYb, Z()FYE))

(X1|wFY0, Xo’Z/) |—4_4 (XOU)FYO, X1Z/).

After that XowFYp arrive without any change in the third component, i.e. the
erroneous word XqwFYy become XqgwF'Yy which is a correct word.

We did not found a solution to this problem, therefore a complete rewriting of
the system is necessary.

4.5.3 Correction of the system TVDH7

We continue with the system presented in [44] which we shall call TVDH7. Its
definition is given in the Fig. 4.4.

The functioning of the system TVDHT is not correct. It has the following errors:

1) It is necessary to add ZYp, ZYO’ et XoZ to axioms.

2) The problem of the rule z.1. The utilisation of this rule permits to produce
erroneous words:

(Xjo5 2|, 2|2) b-2n (X022, Z),

4.6. CONCLUSIONS 55

Let NUT ={a1,...,an-1},n>3,and P ={u; - v; | 1 <i<m}. Let o, = B
a new symbol. Let ¢ and j such that 1 <i<met1<j<n.
We consider TVDHT = (V, T, A, R4, ..., R7), where

|4 = NUTU{X7Y7Yl72737Y07X07Y0/7}/J',Yj/7xj}7
A = {XBSY,ZY,ZY' ZZ,ZvY,ZY;, ZY], X;0; Z, X; Z},

R ={1.1: e#u; Y$Z#0,Y, 1.2: e#YSZ#Y, 1.3: e#Y;$Z#Y},

Ry = {2.1: e#a; YSZ#Y;, 2.2: e#YSZH#Y', 2.3: e#Y;$Z#Y] },

Ry = {3.1: X#eS$X;0,#Z, 3.2: e#Y'$ZH#Y, 3.3: e#Y$Z#Y;},

Ry = {4.1: e#Y;8Z#Y; 1, 4.2: e#YSZ#Y},

Rs = {5.1: X;#e$X; 1 #Z, 5.2: e#YSZ#Y},

Ro = {6.1: e#Yo$Z#Y, 6.2: e#YoS$ZZ#e, 6.3: e#YSZH#Y', 6.4: e#Y;8Z#Y]},
Ry = {7.1: Xo#eSX#Z, 1.2: XoB#SH#ZZ, 1.3: c#Y'SZ#Y, T.4: e#Y$Z#Y;}.

All component contain also the rule z.1 : Z#e$Z#e.

Figure 4.4: The system TVDH7

(XjOéjZZ‘, Z|Yk) |_z.1 (XjOéjZZYk, Z)

In this way we can obtain all possible words of type X;a; ZZY},.

Finally, we have the following application which leads to an error:

(XoB|wY, Xa;| ZZYy) Fro (XawY, XoBZZYy,).

A similar error is caused by the rule 6.2, but at another end of the word.

We can try to solve this problem by replacing ZZ by a new symbol Z’, but this
creates a new problem, similar to the problem of TVDH3. In this case we produce
by the rule 7.2 the word XoBZ’ which is transformed in X;a; BZ’ which being used
with XgBwY; in the rule 7.2 leads to an erroneous word. We can solve this second
problem by the second method of resolution which was shown for TVDH3. In this
case we place corresponding rules in component 6.

4.6 Conclusions

The TVDH systems introduced in this chapter have a lot of interesting properties.
The elimination strategy gives them a powerful control which permits to manipulate
them easily and which makes them very simple. This is why these systems are
important, since their simple structure gives the possibility to simulate them by
other systems based on splicing. We shall give in Chapters 6 and 9 several examples
of systems that simulate TVDH systems.

The obtained systems were checked by the computer simulator TVDHsim which
was developed during the author’s master thesis. This software permits to simulate

56 CHAPTER 4. TIME-VARYING DISTRIBUTED H SYSTEMS

a TVDH system step by step. The use of this program permitted to find errors in
systems presented in the Section 4.5.

In the next chapter we shall consider systems which are similar to systems that
we examined in this chapter and we shall show that it is possible to reuse some ideas

in this new framework.

Chapter 5

Enhanced time-varying
distributed H systems

Time-varying distributed H systems presented in the previous chapter are based on
the following idea: words of the current set are spliced only once and only the result
of this splicing forms the next set of words. For the moment this single splicing is
almost impossible to realise in practice. It is more natural from a biological point
of view to suppose that at each step we can splice words any number of times as
it is done in the case of H systems, see Section 3.1. This idea was considered by
M. Margenstern et Yu. Rogozhin in [23] where enhanced time-varying distributed
H systems, or ETVDH systems are introduced. We give in this chapter a formal
definition of these systems and describe their computational power.

5.1 Formal definition

Let ¢ = (V, R) be an H scheme. We define the operation & [23]:

(L) =&(L' UL") ¥ o*(L'), where

L' ={w € L|Fwy € L : Jw,w’ € V* : Ir € R : (wy,w2) F (w,w’) or
(wo,w1) by (w,w")}, L" =L\ L.

More exactly, to obtain (L) we take all words from L which can participate in
splicing, .e. L', and we apply o* to them. As a result, we get all possible iterative
splicings of these words as well as initial words from L.

Definition 5.1.1. An enhanced time-varying distributed H system of degree n is
the following n + 3-tuple

E=(V,T.A, R, Ry....,Ry),

where V is an alphabet, T C V is the terminal alphabet, A C V* is a finite set of
axioms and R;, 1 <7 < n called the components are finite sets of splicing rules.

o7

58 CHAPTER 5. ENHANCED TIME-VARYING DISTRIBUTED H SYSTEMS

At each moment £ = n - j + 14, where j > 0, 1 < ¢ < n, only the rules of the
component R; are used for splicing. More exactly, we define

L= A,
Ly Z(fi(Lk), fori=k—1 (mod n)—i—l, k>1,1<t1<n, g, = (V,Rz)

This means for words that at each step k the component R;, i = k—1 (mod n)+
1, firstly applies a filter on the current set of words, i.e. it eliminates the words that
cannot participate in splicing using rules from R;, and after that the system works
as the corresponding H system.

We say that the component R; of an ETVDH system rejects the word w if this
word cannot enter any rule from R;. We write in such case w Tr;. We can omit R;
if the context permits us. In particular, the word w is rejected by R; if it cannot
match any rule from R;.

The language generated by an ETVDH system E consists of all words over the
terminal alphabet produced at some step of computation.

def %
L(E) = (Ups1 L) N T

We denote by EV DH,, the family of languages generated by ETVDH systems
of degree at most n.

Example 5.1.1.

We reconsider the example 4.2.1 in the framework of ETVDH systems.

E=(V,T,AR), where V =T = {a,b,c}, A = {cab}, R = {r= % b }

We have Ly = {cab}. We can apply the rule r to cab and itself: (c|ab, ca|b) b,
(cb,caab). This gives Ly = {cb, cab,caab}. Now we can apply r to caab and
itself: (c|aab, caald) F, (b, caaaab) as well as to cab and caab: (c|ab, caald) b,
(cb,caaab). This gives Ly = {cb, cab, caab, caaab, caaaab}. We can see easily
that L, = {cb,cab,...,ca’b}. Therefore the language generated by E is the
following: L(D) = ca™b, n > 0 which is a regular language.

5.2 The generative power of ETVDH systems

In this section we shall examine the generative power of systems introduced above.
Now one component is not sufficient to produce all recursively enumerable languages.
More exactly, we have the following result:

Theorem 5.2.1. EVDH,; = REG.

Proof. Let E = (V,T,A,R) be an ETVDH system. We have by definition that
L1 = A. Let A’ be the set of words that can enter a splicing rule from R. In this
case Ly = o*(A’). Let L), be the words from Lg that can enter a rule from R.
Then L3 = o*(L)). It is easy to observe that Ly = L3. Indeed, Ly is the smallest
closure of A’ with respect to the splicing operation. As A" C L, C Ly = 0*(A’), we

5.2. THE GENERATIVE POWER OF ETVDH SYSTEMS 59

obtain that o*(L}) = Lo. Similarly we obtain that Ly = Lo, k > 2. Therefore, the
language generated by F is L(E) = o*(A') NT*. As 0*(A’) is a regular language
and the family of regular languages is closed with respect to intersection we obtain
that L(F) C REG. The inverse inclusion also holds, see Theorem 4.1.1. O

We observe that ETVDH systems with one component are very similar to ex-
tended H systems. The following example shows the difference between these two
models. It consists in the application of the filtering rule.

Example 5.2.1.
Let us consider the ETVDH system E = (V,T,A,R), where V = T =
_ _ c |aa c |ab
{¢,a,b}, A = {cab,caab} and R = { aa| b “aaa| b
sider also the extended H system EH = (V,T,A,R). It is easy to see that
L(EH) = ca™b, n > 0,n # 3. In the case of the system FE, the word cab is

eliminated firstly as it cannot participate in a splicing. Therefore, the language
produced by this system is L(E) = o*({caab}) = ca®*"b, n > 0.

}. Let us con-

Now we show that ETVDH systems have the same power as Turing machines.

Theorem 5.2.2. For any type-0 grammar G = (N, T, P,S) there is an ETVDH
system Eq = (V,T, A, R1, Ro, R3) of degree 3 which simulates G and L(G) = L(Eg).

Proof.

Formal definition of the system

We define Eq = (V, T, A, Ry, Ra, R3) as follows.

Let NUT U{B} = {a1,a2,...,an} (B=a,) and B¢ NUT.

We assume below that 1 <i<n, 1 <j<n—-1 2<I<n, 1<k<bac
NUTU{B}.

The alphabet V is defined by V = NUTU{B}U{X.,Y, X,,Y;, X/ Y/, XJ’»’, Yj”,X’,
Y, X" Y X" YY" YV 7 Zg,C,C1,Ca, D, Dy, Dy, ZE}.

The terminal alphabet T is the same as for the grammar G.

Axioms are defined by: A = {XSBY, X!Z}, Z+Y!, 2Y;, X" Z, ZY1V |
Xiai 2, 2Y]\ X' 2, 2Y", X; 2, 2Y, Z2Y" X Z, X[Z, 2Y" , X" Z, ZY,
CZ%,CZp,Z%D, ZpD,CyZ" Dy, Z'C1, D1} U{ZvY : Ju — v € P}.

We define the components of the system as follows.

Component R;:

e | uY €| aY Xy | a
7UY s HUH'UGP, 1.2: 7 }/Z ; 13?{’%’
al|Y/ X' | a al Y
1.4 . Z Y] Pl 1.5 . X// Z) 1.6 . T’T'T’
/ / 3 1 /!
1.7 Xi | Zp ; 1.8: Xi | Zp ; 1.9: Zp | Vi ;
C | Zg C | Zg Zg | D
Z: | Y! Z" | Cq
1.10 : *5—’—’3 L. 1.11: ;
Zy | D Di| ¢

1.1:

60 CHAPTER 5. ENHANCED TIME-VARYING DISTRIBUTED H SYSTEMS

Component Rs:
X la | cal Yy C Xi|a | Cal|yy
21W’T 22 iy 23y 24y
X" a alY” a | BY"” X" | a
2.5.#3"7’ 2.6.7’W’ 2.7.7’T7 2.8. X Z 3
X!/ | Z:

X! | z4
2.9: : 210 —{1°F .
Yoz O Tz
L Zp Y L Zp | Y . G| 27
2.11: 725D 2.12: Zo D 2.13: c D,

Component Rs:

c_a Y X la caly’ X" la
3.1. ZET7 3.2. Xl/l_l Z 9 3.3.7%7 3.4. XI// Z 9

. Ze | Y] . .
T B g 3.9.ZED,3.10.ZED,

The components Ri, Ro and R3 contain also the following rules:
«

5 z for any axiom « € A, except XSBY, X;Z3 et Z3Yi.

We affirm that L(Eg) = L(G).

We shall prove this assertion in the following way. Firstly we show how we
can simulate the derivations of the formal grammar G. In this way we prove that
L(G) C L(Eg). In the same time we consider all other possible evolutions and we
show that they do not lead to a terminal string. Consequently, our assertion will be
proved.

Notations

We shall use the following notation:

/%
w1 | Wy W1Wy

r , Wiw2

wh | wh whwe
where * indicates a possible occurrence of T. The application of the rule r on wjws
and wjw is shown in the left side of the formula. The right side contains resulting
words wyw), and wjws. We shall also use the following convention: the upper part of
both sides will contain the words in which we are interested, while the lower part will
contain either an axiom, or a word containing Z with indices, which does not alter
the computation. The symbol T indicates the rejection of the considered molecule
by the next component. The optional term of the right side in the formula, wjws, is
omitted if that molecule, which in principle enters the next component, is rejected
by the next component. In the opposite case it is written.

5.2. THE GENERATIVE POWER OF ETVDH SYSTEMS 61

Our simulation is based on the “rotate-and-simulate” method, see Section 4.1.2.
We use a technique similar to the one used in |23, 40, 44|, see also Theorem 4.3.1.
We start with the word Xwa;Y in the component R;. After the application of rule
1.2 component Ry receives XwY;. In Ro, the rule 2.1 is applied, and Rj3 receives
words XjajwY; (1 < j < n). After that point the system works in a cycle where
indices ¢ and j decrease simultaneously. The words for which j # ¢ are eliminated
and only words of type Xja;wY] remain. After that we obtain the word Xa;wY,
therefore we rotated the word Xwa;Y. If a;w = a;w'B and a;w’ € T*, this word
which belongs to the result is also produced.

The system is constructed in a such way that the words X/Zg appear in the first
component only during an even step of computation, i.e. if we have these molecules
in the first component, the next time when we will be in this component (after 3
steps) these molecules (X/Zp) will not exist. This is a very important property of
our system that permits a correct simulation to be performed.

This property is implemented in the following way. We have in the system a word
X!Z%, and at each step we increment p modulo 5 by using rules 1.7, 1.8, 2.9, 2.10,
3.7 and 3.8. When p = 0, we obtain X/Zp. We start with X/Z3 and this permits
to have the word X/Zp in the first tube only during even steps of computation.

A similar thing happens to the words ZgY;. They appear in the third component
only during an odd step of computation.

The word Z' is produced in the first component and it appears in the second
component only. The word Z” is produced in the second component and it appears
in the third component only.

The motivation of above properties is the same as for the method of directing
molecules and it can be found in Chapter 6 where we describe it more systematically.

The flow-chart of the computation

The computation follows the flow-chart shown in the Fig. 5.1. The vertices of the
flow-chart show a configuration of molecules during the computation. We enumerate
all configurations and their numbers are in the upper right corner. Inside configu-
rations, the symbol w is treated as a variable, and it may have different values in
different configurations. E.g., if in configuration 14 the symbol w is equal to w’a;
then in configuration 15 it may have the value w’. We shall show that the compu-
tation follows the flow-chart from the Fig. 5.1, i.e. all molecules produced in one
configuration will be eliminated except these from the next configuration.

As the length of both cycles is an even number, the parity of the step number is
the same for all words in a particular configuration. Moreover, it is easy to verify that
words from one configuration arrive always in the same component. Therefore we
can say that each configuration has a component number and a parity of computing
step associated to it.

We see that in the lower cycle we decrement simultaneously both indices and
that in the upper cycle we make the rotation of letters.

Because we deal with an ETVDH system, there are two types of molecules which

62 CHAPTER 5. ENHANCED TIME-VARYING DISTRIBUTED H SYSTEMS

12 11 10

X///wylV X"wY" <— X"wY" W
13 \ 9
XwY!V X"wYy X'"wY" —— X"w
14 8
Start =———= XwY X"'wY; X'wy"”
15 7
XwY; X'wY’
1 2 3
X;wY; X;wY/ X]’-in’
4

6 5
" i " " / "
Xj_leg_l - Xj WY <~ ijYi_1

Figure 5.1: The flow-chart of the computation

pass to the next step: the generated molecules and the molecules which generated
them, as these last ones belong to o*. We show that the last ones will be eliminated
during the next step, including other molecules that may be produced from them
during this next step, and we will discuss in detail other cases in order to show that
we perform a correct simulation.

We will show several steps of the computation and after that we will discuss each
configuration in detail.

We start with the word XwY = Xw'a;Y, where 1 < ¢ < n.

/ /
XZw a;;f Fio 4);1:2? , XuwaY .
The words Xw'a;Y and Xw'Y; go to the next component.

Let us consider the evolution of Xw'a;Y:
X |vwaY Xpapw'a;Y 1

F e .
Xear 7 2.1 X7 , ke{l,...,n}
We see that we do not produce any new word. For Xw'Y; we have:
X w’YZ— Xkakwlyi /
Xkak 7 |_2.]_ T, X’U)K, kE {1,7n}

The words Xw'Y; and Xja,w'Y; go to the next component.
We are at an odd step. So, the words ZgY; exist and we can apply the following
rule:

Xu' | Y; = Xw'Y! 1

Zg | Y] P Zgy;
The word Xw'Y; is eliminated. For Xpaiw'Y; we have:

Xpapw' | Y; - Xpapw'Y;

Zg Y] ZgY,

5.2. THE GENERATIVE POWER OF ETVDH SYSTEMS 63

The words Xja,w'Y; and Xparw'Y; go to the next component.
And we can continue in a similar manner.

Now we shall discuss each configuration in details. We shall group configurations
having a similar behaviour.

Group 1 Configurations 4,5,6,7,11,13,15 which have a simple behaviour.
We shall discuss configuration 5 in details.

X]/'/—lw ‘ YZLI }_14 XZ/'/—lw}/;—l
Z | Yia ’ zyy,
The word X]’-’Ain,l is in configuration 6.

X;’_lw}/i’il , 2<i,5<n.

The word X ;’_1w1/i’i 1 is eliminated during the next step:
Xi ‘ wY’, XjwY!) 1
X;1| Z X!z
A computation similar to the one shown above permits us to advance in the
flow-chart and applies for all configurations, except configuration 3. We examine
below other possibilities of computation that exist for remaining configurations.

Fos

Group 2 Configuration 14, related to the application of the rule u — v of the
grammar.

We can apply the rule 1.1 in addition to computations similar to group 1. This
permits us to simulate the application of the rule u — v from G.

The word XwvY can be further involved in a splicing in the same component
for a computation similar to group 1.

Group 3 Configurations 8 and 10 where we can splice with Z’ or Z”.

We can apply the rule 2.7, or 3.5 for configuration 10, in addition to computations
similar to group 1, but this do not produces any new words. Below we give the
description of this computation for configuration 10.

X" | wY™ wY"
sz " g XY
X"w | Y quyfv T
Z [yv T gy

w Y/// - wYIVT
7Y 1.6 A%

Group 4 Configuration 9 where it is possible to obtain the result.
We can apply rules 2.7 and 3.5 consecutively in addition to computations similar
to group 1 and 3. In this case, if w € T™, then we add w to the result.

64 CHAPTER 5. ENHANCED TIME-VARYING DISTRIBUTED H SYSTEMS

X//w// Byl/ X//U}H
T’T 21 gy XWBYT
X" w i w

c 77 3.5 b7

Group 5 Configurations 1 and 2.
We can have the following computation in addition to computations similar to
group 1 and 3. We examine the case of configuration 1:

Xlw }/z Xlei’ .
— : <1< n.
Zp | Y/ F3.1 7Y, XwY;, 1<i<n
The word X wY] is in configuration 2.
X, | wy; XiwY;
X[[Ze % XiZp
1| 4E 14E

This is one of cases when a generating molecule produces a word which is not
eliminated immediately.

X1 | wY; X'wY; 1
X'| Z X1z
The words XjwY; and X'wY; are rejected by the next component because the
next step is an even step and the molecules ZgY; do not exist during this step. This
is why we cannot apply the rule 3.1.
For configuration 2 we have the following computation:
!/ !/ !/
T P Sl X! 1<k<n
The word X, wY/ is in configuration 3.
Xpw | Y/ i XwY!
? Y/ 2.4 Z4Y1/ 3

Fo3

ka Y’ - kaY” T
zZ [ym %3 zyr
The words XpwY’ and X,wY” are rejected by the next component because the
next step is an odd step and the molecules X!Zp do not exist during this step. This
is why we cannot apply the rule 1.3.

Group 6 Configuration 3 where we check if we are at the end of the rotation.
There are 4 cases with respect to ¢ and j:

a) XjwY{, b) XjwY/, ¢) XjwY{, d) XjwY/, 2<i,j<n

a) Case X;wY].

Xw }/1/ XwY’
/7 ! /
7 Y/ |_2.4 ZYll ; X]wYI 3
Xt | wY! X7 jwY{ 1
F3.9 —l

" !/
Xz X'Z

5.2. THE GENERATIVE POWER OF ETVDH SYSTEMS

There are two rules which may be applied to X J’-wY’ : 3.2 and 3.3. We obtain:

Xw|Y’ XwY" 7
7 [y s AL
Xt | wY’ - X! jwY' 1
X"z 32 X'z
We can apply once more rules 3.3 and 3.2 to words above, which gives us:
X! jw|Y' X! jwY” 1
Fgg —I———.
Z Y” AL

Therefore this computation do not produce new words.
b) Case XjwY.
There are two rules which may be applied to X{wY;: 2.2 and 2.3. We obtain:

Xuw| Y XYl
7 |y, 7]

X1 | wY/ X'wY! 1
L i Fog ——ri i

X' Z X1z

We can apply once more rules 2.3 and 2.2 to words above, which gives us:

Xw| ¥, | Xw¥f

7 |y, v,

Therefore this computation do not produce new words.
c) Case X [wY].
There are two rules which may be applied to X{wY]: 2.4 and 2.3. We obtain:

Xiw | Y/ - X{wY’
zZ |y vyl
X7 | wY! X'wY{ 1
/ Fa.3 — 7
X'\ Z X1Z
We can apply once more rules 2.3 and 2.4 to words above, which gives us:
X | wY’ X'wY’
X% 7 Fo3 —X{Z , XjwY’.
The word X’wY” is in configuration 7.
Xiw | Y’ i XiwY" 1
zZ |ym 33 ZY'
d) Case ngYg, i,j>1.
Xpw | Y/ X wY!
A e L X
7 }/;/Ll ZY;I k 7

The word X, wY;” | is in configuration 4.

Xy ey XY
X/ |z - XiZ

Group 7 Configuration 12, which permits to start a parallel branch.
X" wYIV walV " v
x|z o oxmz o AWV
The word XwY !V is in configuration 13.

65

66 CHAPTER 5. ENHANCED TIME-VARYING DISTRIBUTED H SYSTEMS

X///w YIV i X’”wY
", .1 . ", I\
XZw a;/Y Fio %, X"wa;Y, 1<i<n,
% %
m
X wY - XwY
X |z 28 Xy
" AV y/.
); wZYVZ Fg.g %, XI”’U)/Y; .

The obtained words XwY and Xw'Y; are the same as the words that are obtained
by following the flow-chart of the computation. Therefore they exist already during
this step.

n, ./ g n, ./ '/
X"w Yl, oy X"w'Y;] T
Zg |Y; ZEY;

Final remarks

We note that it was possible to use the word C1Z’ instead of Z’ and the word
Z"(Cy instead of Z” in some places of the computation above. Meanwhile these
applications, which introduce C and (5 in the concerned word, do not annulate the
rejection of that word by the next component.

It is easy to see that by following the flow-chart of the computation we obtain
all words of L(G) and, as we considered all possible cases, it is clear that the system
does not produce other words. O

We remark that the same result may be obtained with two components and we
present this proof in Chapter 6, see Theorem 6.2.1.

5.3 Conclusions

In spite of complexity of ETVDH systems, we succeeded to direct the computation
and to produce all recursively enumerable languages with only three components.
The proof of this result is based on the same principles as the proof in the previous
chapter, but it is much more complicated. Therefore it would be very difficult to
use the same approach in the future. In the next chapter we present a different
approach, which permits to decrease the number of components up to two being
very simple in the same time.

Chapter 6

The method of directing molecules

The proof technique used in previous two chapters reached its limits and it cannot
be further used to decrease the number of components in considered systems. In this
chapter we analyse this technique and we show a new method that will permit us
to decrease the number of components in the systems considered before. This new
technique, the method of directing molecules, is based on a reorganisation of the
computation flow. It also requires a good synchronisation between different parts of
the computation flow. Moreover, this method is very generic and it can be applied
to a variety of systems based on splicing, see also Chapters 7, 8, and 9.

6.1 Description of the method

First, we analyse the computation in systems presented in Theorems 4.3.1 and 5.2.2.
The main idea of these computations is the following: the word that codes a senten-
tial form of the grammar is modified at one of its ends by splicing it with an axiom.
We shall say that this axiom is associated to the corresponding rule. We are inter-
ested only in one result of this splicing and rules are distributed over components in
a way that permits the elimination of the second word as well as of the initial word
in the case of ETVDH systems. To preserve the axiom, we use special rules that
propagate axioms.

Correct simulation of the grammar is performed by using this method with
judicious choice of rule placement in the components. Since necessary axioms are
present all the time, any rule of a component can be used each time we arrive in
that component. But, in fact, each time we need to apply only one rule. Therefore
other rules may pose problems for correct simulation.

This is why we propose a new method of simulation which corrects some of
defects of the method above. Now we do not permit any more to axioms to be
present all the time, but only during steps when they are really needed. In order
to do this, we mark them with a number, the state, and we increase it modulo k at
each step. When we arrive to zero, the right word is recreated and we can use it
for a splicing. We shall call these words directing molecules. So, the apparition of a
directing molecule at some step of the computation depends on its period k and its

67

68 CHAPTER 6. THE METHOD OF DIRECTING MOLECULES

initial state.

Now let us see what are the changes in the computation which result from the
introduction of directing molecules. The application of a rule is controlled now not
only by its position, but also by the period of the directing molecule associated
to that rule. Therefore at each step only necessary rules may be applied, because
other rules of the same component are not applicable because the second word
participating in splicing is not present. This gives us the possibility to refine the
control imposed by components and, by rearranging rules, to decrease the number
of components necessary for a simulation of a grammar.

We present below two examples of this technique where we decrease the num-
ber of components needed to simulate a type-0 grammar by TVDH and ETVDH
systems.

6.2 ETVDH systems of degree 2

In this section we show how it is possible to apply the reflections above. We consider
ETVDH systems and we show that two components are enough in order to simulate
an arbitrary grammar.

Theorem 6.2.1. Let G = (N,T,P,S) be a type-0 grammar. Then, there is an
ETVDH system Eq = (V,T, A, R1, R2) of degree 2 which simulates G and L(G) =
L(Eg).

Proof. We shall prove this assertion in the following way. Firstly we show how we
can simulate the derivations of the formal grammar G. In this way we prove that
L(G) C L(Eg). In the same time we consider all other possible evolutions and we
show that they do not lead to a terminal string. Consequently, our assertion will be
proved.

Our simulation is based on the “rotate-and-simulate” method, see Section 4.1.2.
We already described how to adapt this method to ETVDH systems during the
proof of Theorem 5.2.2.

At first we give the flow-chart of the computation and the description of the
method that we use. After that we give the formal definition of the system.

The flow-chart of the computation

The computation in Eg follows the flow-chart shown in the Fig. 6.1. The vertices
of the flow-chart show a configuration of molecules during the computation. We
enumerate all configurations and their numbers are in the upper right corner. The
flow-chart is composed from two parts: the upper part and the lower part. Config-
urations having the same number in both parts occur in the same time. Is is easy
to see that in the lower part we decrease simultaneously indices of X and Y and
that we continue to the upper part when both indices are equal to one. The upper
part completes the rotation, simulates rules of the grammar, and permits to produce
a resulting word. It is easy to verify that words from one particular configuration

6.2. ETVDH SYSTEMS OF DEGREE 2 69

always arrive in a component with the same number. Therefore, we can say that
each configuration has an associated component. In configurations, the symbol w is
treated as a variable, and it may have different values in different configurations. For
example, if in configuration 8 the symbol w is equal to w’a; then in configuration 1
it may have the value w’. We will show that the computation follows the flow-chart
from the Fig. 6.1, i.e., all molecules produced in one configuration will be eliminated
except molecules from the next configuration.

5

X”WY”/ W
6‘/ \) T
wal/l Xllwy/l X/IW
| .
Start =——— XwY X'wy”
l 8 T 2
X;wY X'wy’
\ 1/1
XjWY;‘
y WY? \X Y/2
j—1 i—1 JWi_g
o Ly v LY
j—1 i—1 j—1 i—1
v LY v Qy
j—1WEi 1 J—17 i1

n "
Xj WY,

Figure 6.1: The flow-chart of the computation

Directing molecules

The transition between two configurations is done by making changes at one of the
ends of the word. For this, the word is spliced with directing molecules of form Z; T},
or Ty, Z,, which make changes at the right end, respectively left end, of the word.
The method of directing molecules permits us to avoid erroneous branches of the
computation.

70 CHAPTER 6. THE METHOD OF DIRECTING MOLECULES

Directing molecules, see also Section 6.1, are created only at the moment when
they are really necessary. For example, directing molecules for configuration 5
(Z4Yj’” , XZ14, C1Z45) are created during the previous step and they will not exist
in configuration 8. Therefore, each molecule can be in one of eight states and at
each step the state of the molecule is incremented modulo 8. When the state of
the molecule is zero, in this case it is omitted, we obtain the directing molecule
which can be further used. For example, we are in configuration 5 and we have the
directing molecule X Z14. We mark it with 1 by the rule 1.2.5: (X|Z14, Z|Z14) F1.25
(XZ1,, ZZ14). During the next step, the molecule X Z}, changes its state in 2 after
the application of the rule 2.2.1. We continue in a similar manner and we obtain the
following computation: XZy4= XZ{,=XZ% =... = XZ{,= XZ14. Thus, the
molecule X 714 appears with a period equal to 8 and it is present in configurations
4, 5 and 6, but it can be used in configuration 5 only, see also page 72.

So, this technique permits to refine the control of the application of rules of the
same component and it permits to divide them in subsets which are activated by
specific directing molecules.

Formal definition of the system

Now we give the formal definition of the system.

We construct Eq = (V,T, A, Ry, Ry) as follows.

Let NUT U{B} = {a1,a2,...,a,} (B=ay)and B¢V UT.

In what follows we assume that:
1<i<n, 1<j<n—12<1<n, 1<k<11,12<m <20, 1<s<T,
a,be NuT U{B}.

The alphabet V is defined by:
V=NUTU{B}U{X,Y, X" Y' X" Y" Y" X;,Y;, X[, Y], XY/, X" Y", Z, Z3,
Zm, 25, Z,C1,Ca}.

The terminal alphabet T is the same as for the grammar G.

Axioms are defined by:

A ={XBSY}U{XiaiZs, Z5Yj, X}' Z1g, Z3Y, X Z3,, C1 235, Z3Y]", X[Z35, Z3Y",
Z3Co, X" 23, Z3Y], X 207, Z3Y", Z9Y], Z8Y', X' 2%y, X573y, Z{,Yi} U{ZZ, Z} Z,
ZZm, 225, Yy U{Z]vY : Ju — v € P}.

Now we shall give the definition of components of the system. The numbering
of rules not having z in their names follows the following conventions:

e The first number shows the component that this rule belongs to.
e The second number indicates in which configuration this rule may be applied.

e The third number shows the position on the flow-chart of computation of the
molecule to which this rule may be applied: if it is equal to 1, then the rule is
applied to a molecule being in a configuration from a lower part of the flow-
chart, while if it is greater than 1, then the rule is applied to a molecule being
in a configuration from the upper part of the flow-chart.

6.2. ETVDH SYSTEMS OF DEGREE 2 71

The numbering of rules having z in their names follows the following conventions:

e The first number shows the component to which this rule belongs to.

e The second number which is just after z indicates the parity of the step when
the directing molecule (to which this rule is applied) is used. If this number
is between 1 and 8, then this rule is applied to a directing molecule which is
utilisable during an odd step; if the number is between 9 and 16, then the rule
is applied to a directing molecule which is utilisable during an even step.

Component R;:
Rules for transition between configurations:

o a|l vy _a | X a
1.1.1: 7 Yll,l ; 1.1.2.72’?, 1.1.3.7’2712,

a |Y/ X' | a a | Y/
131 — v 132: St —; 151 — yir
X"| a X" a a " X a
152: 37— 153: cz— i LTl o L72:
Rules for creation of directing molecules:
Directing molecules for odd steps:
Ty | Ty . Zl% T, . . Zl‘cl Tk, . . Zl? Tk, .
1.z.1: Zk1 7 1.2.2: Zk1 7 1.2.3: Z;?l 7 l.z.4: Zk1 7
. Tml Zml . . T Z2 . . Tml an . . Tm1 Zgz .
1.2.5: Z |7, 1.2.6: Z |73 1.2.7: Z |25 1.2.8: 7 [725,
Directing molecules for even steps:
Z | Ty, Z3 | Ty, Z5 | Ty, 77 | Ty,
BRI i et e SIEEESIEES e SEERERCEE e o
2 2 2
T, Z}1 T, z3 T, Al T, A
1.2.13 : —22 M2 1214 22 M2 1215 22 2 1.2.16 e e .
7 |22, AN 7 |25, Z | Zom,
Component Rj:
Rules for transition between configurations:
X a a |Y’ X' | a ab | Y”
2.2.1: T 2221 7 241 Xz 2421 —
a BY// X// a a Y/l/ X/// a
243: ot — 261 Xz 262: 5 281: Fenn et
a | aqY a |uY
2821 1 283 o

Rules for creation of directing molecules:
Directing molecules for odd steps:

) Z]i Ty, Z,:;’ Ty, Z]? Ty, Z,Z T,
2.z2.1: 72:—‘? 3 2.2.2 Zk 7 5 2 3 Zkl 7 5 2 4 Zkl 7 3
1 3 5 7
225 Lot dm 9.6 Tl Zm g, g, T 12 Ty | Zm,

72 CHAPTER 6. THE METHOD OF DIRECTING MOLECULES

Directing molecules for even steps:

. Zky | Ty . . Zlg T, . . ZI% Tk, . . Zl? T, .
2.2.9: 2%2 7 2.2.10 : Zk 7 2.2.11: Zk 7 2.2.12: Zk 7
2 2 2
. Liny | Zimsy . . Lony Z?n . . TLiny Z;ln . . Liny Z?n
2.2.13: 7 Zm2 ; 2.2.14 : T’ij ; 2.2.15: 7 Zm2 ; 2.2.16 : = Zm2

where 1 < k1 <5,6 <ky <11,12 <my <16, 17 < mgy < 20.
The symbols T} and T}, are given by the following tables:

k|12 3|4 5|6 |7 |8]9]10]11

Tk YI']/ Yl Y;-// Y;‘/// Y} Y// Y/// CQ Y Y; UY

m |12 13 |14 15| 16 |17 |18 | 19 | 20
Tm X/ X” X Cl Xiai XJ/ X]” X],-” Xj

Components Ry and R contain also the following rules:

%’% where o € {22, 232, Z 2o, 225}

Notations

We shall use the same notation as we used in Theorem 5.2.2:

wy | wo wiwh”
; ; F, ———, wws.

The meaning of this notation may be found at page 60.

Description of the computation

It is easy to see that in each configuration n we have three types of directing
molecules that exist:

e Directing molecules for the previous configuration, n — 1, because they partic-
ipated in a splicing during the previous step and being by definition part of
o* they are present during this step.

e Directing molecules for the current configuration, n, because they were created
during the previous step.

e Directing molecules for the next configuration, n+ 1, because they are created
during this step and by definition of ETVDH systems they can be further
involved in a splicing during this step.

The behaviour of all configurations is similar. We discuss now the behaviour of
configurations 5 and 1, see Fig. 6.1.

6.2. ETVDH SYSTEMS OF DEGREE 2 73

Configuration 5. We have the following molecules: X"wY", X7 jwY", (i, >

1) and the following directing molecules: X Z14, C1Z13, Z4Y”/ X”Zlg, Z7Y" Z3(Os,
X779, Z9Y . The first three molecules are directing molecules for configuration 5.
We are in the first component and we have the following computation:

Xl/ ’U)Y’” XwY’" " "

X TM F15.2 X"—ZM’ XwY"™,
X" | wy” wY" ; ”
£ 0121 |_1'5'3 X”01215 ’ XTwy ’
X// 1w ‘ Y// X lQUY”/

l_ Zf X// Y//
Z4 ’ }/Z,i/ 1.5.1 Z4Y//) _1w

The words XwY" et X jwY}”| are in configuration 6. The molecules X"wY ",
wY" and X j’Llei’il are ehmmated during the next step:

Xl/w Yl/l X”’UJY T
Zo v F2.6.2 A
w | Y" wY 1
Zo | v F2.6.2 A
X/ | wY) oo X wY 1
X/// . ’ Zlg .0. X]/'/—1Z19

Thus we showed that we obtain the molecules XwY"’ and X]’~’_1wYZ~’L’ | while all
other molecules are eliminated, i.e., we followed the flow-chart.

Configuration 1. We have the following molecules: X;wY;, as well as the follow-
ing directing molecules: Zli/j/, ZQY,, Xlzlg, Zlon, XjZQQ, X](ZN, Z6Y”.
We shall distinguish 4 cases:

a)i,j>1
|_ J i—1 . .
Zy | Y, 111 7y, 0 uwb

The molecule X ijZ/_ 1 is in configuration 2. The molecule X;wY; is eliminated
during the next step:

X; | wY; - X! jwY; 1
X;_l 71 2.2.1 —%ijn .
b)i,j=1
We can apply two rules: 1.1.2 or 1.1.3:
Xjw | Y i XqwY’
Zy Y L12 T
X1 le X/UJY& T

Al - el S B
X"| Zys b8 X17Z12
We can apply once more the rule 1.1.3 or 1.1.2 to the result of the previous
application:
X; | wY’ X'wY’
—7 Fi13 —~—
X" | Z12 X1Z12
The molecule X'wY” is in configuration 2. The molecule XjwY” will be elimi-
nated during the next step:

Xle/ .

74 CHAPTER 6. THE METHOD OF DIRECTING MOLECULES

Xlw Y/ - Xle” T
Zs | YT %22 ZeY
c)i>1,7=1
Xw | Y N XiwY! 1
Z Y, S
X | wy; X'wY; 1

l_
X'| Zio Lo X17Z12
We can apply one more time the rule 1.1.1 or 1.1.3 to molecules obtained above:

X'w Y; X’wY-’_l 7
- b1 ——i=1 1l
Zy | Y, 21Y;
d)i=1,7>1
ij Yl ijY’]
Z E Fi12 ﬁ, ngyl -

The molecules X;wY7 et X;wY” are eliminated during the next step:

Xj U)Yl - X‘_lel T

le;l T 2.2.1 ﬁ%(jzn
X; |wY’ - X! jwY’ 1

X;_l 71 2.2.1 _j—Xj 71)

ij Y’ - XjZUY” T
Z6 Y// 2.2.2 Z6Y/

We can apply one more time the rule 2.2.1 or 2.2.2 to molecules obtained above:

X; | wY” - X! qwY” 1

X]/;l 71 2.2.1 _]—XjZn .

So, we obtained the molecules X;wY; ; and X'wY”’. In the same time all other
molecules were eliminated, i.e. we followed the flow-chart.

Final remarks

As it is described above, we can pass from one configuration to another one, thus
following the flow-chart of computation from Fig. 6.1. The simulation of the rule
u — v of the grammar is made in configuration 8 by the rule 2.8.3. As we can see,
we implemented the ‘rotate-and-simulate” method which permits to simulate the
grammar.

In order to obtain the result we apply the rule 2.4.3 in configuration 4 and after
that the rule 1.5.3:

X//w BY” Xl/w
2802 c |_2.4‘3 W, XHU)BY” .
X" w i w
e | C1Z1s L83 X0 7y
X" w = Xw
X Zl4 1.5.2 X”Zl4 .

If w € T*, then it belongs to the result. We note that molecules ZgCyBY" and
X" C4 Zy5 persist forever being produced once, but they cannot produce new words.

6.3. TVDH SYSTEMS OF DEGREE 1 75

It is easy to see that by following the flow-chart of computation we generate all
words of L(G), see also Section 4.1.2, and it is clear after the discussion above that
the system does not produce other words.

O

6.3 TVDH systems of degree 1

In this section we show another example of application of the method of directing
molecules. We consider TVDH systems and we show that one component is sufficient
to simulate an arbitrary grammar.

Theorem 6.3.1. Let G = (N, T, P, S) be a type-0 grammar. Then, there is a TVDH
system Dg = (V,T, A, R) of degree 1 which simulates G and L(G) = L(Dg).

This theorem is a corollary of Theorem 4.3.1 and of the following lemma.

Lemma 6.3.2. For any TVDH system D2G constructed in Theorem 4.3.1 there is
a TVDH system of degree 1, D¢ = (V, T, A, R), which simulates D and L(D¢g) =
L(D%).

Proof. In order to prove this lemma we transform, for technical reasons, the TVDH
system Dé from Theorem 4.3.1 into a form which is more suitable for our simulation.
In order to do this, some letters are numbered and some rules have bigger sites,
but these transformations do not alter neither the behaviour of the system nor
the generated language. We do not make any more the distinction between this
transformed system and the system from Theorem 4.3.1 and we shall refer below to
it as D%;, see Fig. 6.2. This system has the following properties:

e It has two components.

e [t has two independent subsets of axioms which persist during the computa-
tion. One of these subsets is used for splicing in the first component only, the
other one is used for splicing in the second component only .

e The rules are constructed in a such way that molecules that code different
stages of the grammar simulation can be spliced only with axioms from the
two said subsets.

We shall use the method of directing molecules in order to simulate DZ. At first
we place rules 1.1 to 1.9 from R? and rules 2.1 to 2.8 from R3 in one component.
We shall call these rules main rules. We can easily see that main rules permit to
implement the “rotate-and-simulate” method, while all other rules are necessary to
propagate axioms. Each axiom from A? or A3 of the initial system, i.e., associated
to a main rule, become a directing molecule with period of 2. Since we have only one
state, we replace it by a prime. We say that a directing molecule is in the passive
state if it is primed, otherwise we say that it is in the active state.

76

CHAPTER 6. THE METHOD OF DIRECTING MOLECULES

D% = (V2 T% A% R%, R%).
Let NUTU{B} ={a1,a2,...,an} (an
In what follows we assume that 1 < i
a,be NUTU{B}.
The alphabet V2 is defined by:
V2 = NUTU{B}U {X,Y,Xi,Yi,Xj’,Yj’,Xj”,Yj”,X’,Y’, X" Y" Cq, Cy,
D1,Dy, Z, }(1 <m < 18).
The terminal alphabet 72 is the same as for the formal grammar G.
The axioms are defined by: A% = {XSBY }UA2UA3U{C1Z4, Z7Cs, D1, D5},
where A3 ={Z1vY;, Ju — va; € P}U{ZlY,,Zng,ZgY Z4Y’ Z5Y” 7Y,
X Zg,X//Zg} and A2 = {X1G1Z11,XJZ13,XJ Zl4,Zl7Y/,218Y” X15Z, Xj212}.

n—1,2 <k <n,

The components of the system are defined as follows.
Component R3:

a |uY
Z1 ’U}/j

. ab Yk . . a Y/
1.3 . Tﬁ 9 1.4 . Z5 Y//

al
Zg
a Y” a BY" Y Z16
LTy 18— 4‘—L —’Tl

a | aqjuY
, Ju—va;EP; 1.1 . , Ju—e€P;

1.1: 7 Yi

; 1.5:

Component R3:

X iai le Xk 1 X" Zl4
a X" a

X" X//
a | a . 28 -

Co
; 2.6 2.7 : ;
Z18 ‘ Y” ’ 6 X ’ Z15 ’ 7 e ‘ Z16 ’

e

) Z7
'XJ-]Z12 P 2975,

3

2.5:

Components R? and R3 contain also the following rules:

%’% for each axiom o € A2, except XSBY'.

Figure 6.2: The system Dg;

Now we organise the computation in a way to have directing molecules from

A? in the active state during an odd step and in the passive state during an even
step. Similarly, we make directing molecules from A2 to appear in the passive state
during an odd step and in the active state during an even step. We note that
directing molecules which are in the passive state match only rules which permit to
make them active. Directing molecules which are in the active state may enter rules
which permit to make them passive as well as rules which correspond to the main
rules from Dé. We also note that molecules, which are complementary to directing
molecules with respect to rules that change their state, are already present in the

6.3. TVDH SYSTEMS OF DEGREE 1 7

system.

We see that by this process we simulate the behaviour of the first component
during an odd step and the behaviour of the second component during an even step,
see Fig. 6.3 and 6.5. This leads to a correct simulation of the system DQG. The
transformation of the system D2 into D¢ is shown at Fig. 6.4.

- — =

~ ~

/
/

- - N N
D2, 1 3 2 4
\\~ -
/X e
D¢ 1 2 3 4 e

Figure 6.3: Simulation of components of the system Dé. The step number is indi-
cated in the boxes.

For example, we have the molecule Z5Y; during an odd step. It may be used
in rule 2 for a splicing and we simulate in this case the rule 1.2 of the system Dé.
We can also deactivate this molecule by the rule 22: (Z2Y;, Z4R1) b0 (Z5Yi, ZaRy).
During the next step, which is even, the molecule Z5Y; does not exist any more,
therefore the rule 2 cannot be applied. From the other side, we can activate the
molecule Z, Ry by using the rule 22/, because its complementary molecule Zs Ry was
produced during the previous step. So, we obtain again the molecule Z3R; and we
are at an odd step. The Fig. 6.5 contains an illustration of it.

Similar reasoning applies to all molecules having Z with indices.

Rules 1.8, 1.10, 2.7 and 2.9 are used in Dé in order to obtain a resulting terminal
word. In D¢, for technical reasons, they are simulated in a special way by rules 7,
16, z.1, .2, and r.1 to r.16.

Formal description of the system

Now we will give a more formal definition of the system.

We define Dg = (V, T, A, Ry) as follows.

Let NUT U{B} ={a1,a2,...,an} (B=a,) and BZ NUT.

In what follows we assume that:
1<i<n,1<j<n-1,2<k<n, s€{0,2}, aabe NUTU{B}
The alphabet V is defined by V ={V?2\ {C1, C, D1, Do}}U{R1, Ry, Z!, (1<m<18)}U
{C;,C5,R, 28, 2V, Z%,, Z%, (1<p<3), D5, E35, Zp, Z}.

78 CHAPTER 6. THE METHOD OF DIRECTING MOLECULES

TVDH2 system D2

Component | Component I
a |aY X; | ab
.2: le 2.2:
Rule 1.2 ZQ }/; Rule ﬁ'zim
Axiom: NG Axiom: X]’- Z13

. Z5Y; | € . XiZ3 | €
Rule for axiom: AAE Rule for axiom: XJ,' 73 | 2

(present in both (present in both
components) components)

TVDH]1 system D (1 component)

s

a | aqY X; | ab
: Rule 13:
Rule 2 ZQ }/Z ule ﬁ’?ﬂg
Axioms: Z5Y;, Z4Ry Axioms: X]’~Z137 RoZ13
Zy | Y; Xz
Rules for 22 21 Rules for 213 : 13
. Zy | By . Ry | Z13
axioms: 2y axioms: i | 2
22 2| i 213" : L —13
Zsy | Ry Ry | Z13

Figure 6.4: Transformation of TVDH2 system D?; into a TVDH1 system.

The terminal alphabet T is the same as the one of D% (T = T?), i.e., the
terminal alphabet of G.

Axioms are defined by: A ={XSBY}U A; U Ay U AR, where

Ay ={ZvY;: Ju —va; € PYU{Z1Y; : Ju —e€ P} U
{2:Y5, Z5Y}, Z4Y], Z5Y ', Z6Y, X' Z3, X" Zo} U{Z,, R (1 < m < 7), R1Zg, R1Zy}.

{Z17R2, Z18R2, R2 Z,, (11<m<16) }.

Ar = {CZ4,C3Z%, RZ1s, RZ35, Z2C3,
Z3C2,72R, Z7:R, DV 7}, D373 RZ% RZp, ZpEY, Z+F2, ZLR, Z3 R}.

Axioms from A; and Ay are used to simulate the behaviour of the first and,
respectively, second component. Axioms from Ag are used to obtain the result.

Simulation of rules of the first component of the original system (the original

6.3. TVDH SYSTEMS OF DEGREE 1 79
The evolution of X3aswYs
TVDH?2 system D2 TVDH1 system D¢
Odd step (we are in the component 1) Odd step
/ !/ / U
We have Z,Y] and X,Z3. We have Z4§2’ZZ4R1’ X323,
2213.
I
X3CLBUJ }/3/ [M X3CL3’LU | }/3 - X3a3w}/2,
Zy YZ Z4Y3 Z4 | YQ/ Z,Ys
Z,Y] Z,Y]
A p A2 7Yy 2y
4z] e 452 Zy | Ry Z4Ry
Xz Xz
XZats T Xz Xl Za Xz
2413 | € 2413 R2 | Zl3 R22{3
Even step (we are in the component 2) Even step
/ ! !
ﬁ? a3ZwY2 = 7X§(Q3ZwY2 X3 | aswYy C XhazwYy
2 13 3413 Xé| le X3213
Z4Yy Z4Yy
Z4Y2’ 1€ L Z4Y2’ Zy | Yy L Z4Yy
4tz | e 472 Zy | By ZyRy
X5z X5z
7X%Z13 i - 7)(3213 Xé | Z13 - XéZig
2413 | € 2413 Ry | Z3 RyZy3
Figure 6.5: The evolution of X3aswY3 in both systems.
number is given in parenthesis):
a |uY a | aquY a |aq;Y
1(1.1) : Ju—wazeP); 1(1.17): Z Ju—s 7 2(1.2) : :
() Zl ’UY; (Ju—va;€P); () Zl Y; (Ju—eeP); () Z2 Y;)
a|Y/ ab| Y a|Y/
3(1.9) : —1+=2—; 4(1.3): 7 5(1.4): ;
) a0 P s g
a|Y” a | BY” X; | ab X' a
6(1.7) : —— ; 7(1.8): ; 8(1.5) : ; 9(1.6) : ;
1) s 1085 s I 900 2

Simulation of rules of the second component of the original system (the original

number is given in parenthesis):

X a X"| a X, | ab
11(2.1) : ; 12(2.8) 1 —1+ ; 13(2.2) : ;
(2.1) Xia; | Z11 (28) Xj | Z12 (22) X, 1| 213
X a X" a X"| a
14(2.3) : X7 Zi 15(2.6) : X 7 ;o 16(2.7) - 5 [Zng ;
J
ab Y1 a YI

80

Creation of directing molecules from A%:

Deactivation rules:

z1 —Zl —UYi
Z' [Ry
Zs | YV

251

Activation rules:

AREDNE
1 1 .
: Zy| R
o5 LY

Zs | Ry’

Creation of directing molecules from A3:

Deactivation rules:

Xiai Zil .
Ry | Z11 '’

X |z
215" : 15 ;
Ry | Z15

Activation rules:

211" :

Xia; | Z11
11 : :
§ Ry | 7], °
X | Zi5
15 : :
z15 "7]%2 Z{5 ;

Rules for the result:

a0
z.l: ZeEs | e
rq: G126
R Z16 ’

. DilZp
r.5: R ﬁ,

ERZ2ES I
7.9 : Z71 B

Zg | B3

r.13 Z}J T

22| Y L 23 Y
2'2 : 7& Rl N Z3 : é Rl
6. 2ol Y o g XD
' Zé Ry’ "Ry Zé ’
Z51Y; Zh Y
/. 2 ? /. 3 J
z2': 7o |’y 23 Zs | Ry
ZhY X"zt
/. 6 /. 8
26" : 7o | Ry 28" : R Ze
212" :)Rfj 212 ; 213" fé{ g{?’ ;
2 12 2 13
Z/ Y/ ZI Y/l
217" - 17 . 218" 18 ;
Z17 R2 Z18 R2
Xj | Z12 X' | Zi3
212 : ‘]}7 o z13
Ry Z{Z ’ Ry Z{3 ’
Zi7 | Y Zig | Y"
217 : ;o 218 ;
Cy a
T.2: = [DiZp
S Zl S Z2
r.2: %1 —2—212 ; r.J3: —% Ziz ;
Ds | 71 Ds | 72
7.6 : Rl —Q—Zg ; r.7: Rl —rzg ;
1 S 2 S
r.10 : g; %2 ; r11 gg 2.
7 7
ZL | Es
r.14:Z—§’T2; r.15

24 -

29 :

24" :

29" :

z14 :

X"
Ry

214
Z14

CHAPTER 6. THE METHOD OF DIRECTING MOLECULES

i

6.4. CONCLUSIONS 81

The functioning and the result

It is easy to see that each main rule of D% is directly simulated by a rule of Dg.
Now we shall concentrate on the obtention of the result in our system. In the
initial system the molecules Z' and Z” were used to delete the brackets X and
Y. Oune of these molecules was appearing during an even step, while another was
appearing during an odd step. It is intuitively clear that we need directing molecules
with the period of four in order to simulate this behaviour. At first we change the
brackets X and Y to C} and 3 in order to assure that the corresponding molecule
will participate only in the production of the result. After that we use directing
molecules C{Z16 and Z7;C5 with the period of four permitting to eliminate the
brackets C§ and C35. The index s which represents the step number modulo 4 is
used in order to decrease the number of molecules present in the system. This
reduction of the number of molecules permitted to check the constructed system by
the TVDH systems simulator TVDHsim, see [49], developed by the author during his
magster thesis. We also note that this software simulator was widely used for the
construction of this system.

Final remarks

It is clear that by simulating D% in a way described above we obtain all words of
L(Dé). Is is also easy to see that we do not produce other words, because in order
to produce a word in our system we need to use rules 7 and 16, and this corresponds
to the production of a word in Dé.

Now we shall speak about the complexity of the simulation. Each rule of D%
except 1.8, 1.10, 2.7 and 2.9 is simulated in one step of computation. Therefore we
use one step in our system in order to simulate one step of DQG. Rules 1.8, 1.10, 2.7
and 2.9 are used in Dé to obtain the resulting terminal string. In D¢g, we need two
more steps to obtain the same result.

We would also like to note that at each step the set of current words is different
from the set of previous words, i.e., Ly N Ly = (). This is an important property
of the system that will be used later.

O

6.4 Conclusions

We introduced in this chapter the method of directing molecules. We also gave two
examples of application of this method by showing how it is possible to decrease the
number of components in TVDH and ETVDH systems. Now we shall present in an
informal way an abstraction of the method of directing molecules.

Let S be a system based on splicing which is distributed, i.e. it contains several
components. Let us also suppose that S permits the elimination of molecules in
the following sense. In order to eliminate a molecule, we either eliminate it from
the system, or we send it out of the scope of rules of its component. For example,
the elimination of a molecule in the case of TVDH systems is done directly, while

82 CHAPTER 6. THE METHOD OF DIRECTING MOLECULES

in the case of test tube systems which will be introduced in the next chapter we
eliminate a molecule from a component by sending it to another component. Let
Ry, ..., Ry, be the rules of the system distributed over n components. Let Aq,..., A,
be the axioms which correspond to components. Now let R} C Ry,...,R], C R, and
Al C Ay, ..., A, C A, such that for each axiom x = zjuguszs of A}, thereis arule r
in R; such that z matches r: r = w3 #ug$usz#u4 and there is also a rule z#e$z#e in
R; \ R;. By using the method of directing molecules, we can refine the control of the
system S. In order to do this, we transform axioms from A/ into directing molecules
which appear with a certain period. The creation of these molecules during some
step of the computation must be done by one of the following:

e Creation by enumeration and elimination.
e Creation directly by the control.

e Creation by nesting.

The first possibility is realisable if it is possible to eliminate certain molecules
at certain moments of the computation. The directing molecule has a number, its
state, and this state is incremented, at each step, modulo k. In order to do this,
we must be able to increment the state of the molecule as well as to eliminate the
molecule in the previous state. The proof of Theorem 6.2.1 is an example of usage
of this technique.

The second possibility permits to implement the apparition of directing molecules
during certain steps of the computation directly by the control of the system. In
the next chapter we give several proofs which use this technique.

We can use the third possibility if we deal with models where it is possible to
have several iterative applications of splicing rules during the same step. We can
have in this case two levels of directing molecules. Directing molecules of the first
level are created by the mean of directing molecules of the second level. The last
ones may be created by one of the techniques above. Theorem 7.2.2 in the next
chapter is an example which uses this technique.

If the creation of directing molecules related to a step of computation may be
implemented, then the resulting system will have an additional control related to pe-
riods of directing molecules. This control will permit the application of certain rules
at specific moments. Examples of application of this technique to different types of
distributed systems based on splicing may be found in the following chapters.

Chapter 7

Test tube systems with
alternating filters

In this chapter we introduce another distributed model of computation based on
splicing: test tube systems. This is one of the first distributed models based on
splicing which was considered and which was heavily studied. Test tube systems
are inspired by H systems and by formal distributed grammars. In fact, these
systems are composed from a finite number of tubes which are H systems with some
additional filters. The functioning of a such system consists from two steps: a step of
computation and a step of communication which are synchronised. The distribution
of results of the computation during the step of communication is made by specific
rules inspired from similar rules of distributed grammars. Test tube systems have
a complex behaviour and a lot of results concerning their computational power
are known. For example, three tubes suffice to generate all recursively enumerable
languages. From the other side, the computational power of test tube systems with
two tubes is still open. This problem stimulated modifications of test tube systems.
These modifications which are made in the communication process permit to obtain
the computational power of a Turing machine with two tubes only. We also propose
a new variant of test tube systems: test tube systems with alternating filters, or
TTF systems. In this variant the process of filtering is changed and this permits to
obtain a big computational power with two tubes only. Moreover, it is possible to
place rules in the first tube in a way that permits to have no more rules in the second
tube which is used only as a garbage collector. We also show how it is possible to
apply the method of directing molecules to these systems in spite of the fact that
they do not have elimination of molecules.

7.1 Test tube systems

Definition 7.1.1. [5] A test tube system, or a communicating distributed H system,
with n tubes is the following construction:

A= (‘/a T7 (AlaRlaFl)y SR (AannaFn))7

83

84 CHAPTER 7. TEST TUBE SYSTEMS WITH ALTERNATING FILTERS

where V' is an alphabet, T C V is the terminal alphabet, A; C V* are finite sets
of axioms, R;, are finite sets of splicing rules and F; C V, are the filters which are
finite sets of letters, F; CV,1<1i<mn.

Each triplet (A;, R;, F;), 1 < i < n is called a test tube, or simply tube, of A.
We can also call it component.

A configuration of the system is the n-tuple (Ly,...,Ly), Ly CV* 1 <i < mn;
L; is also called the contents of the i*! tube. We define the transition between two
configurations (Li,...,Ly) et (L,..., L) as follows:

(Li,...,Ly)=(LY, ..., L)) iff

v= (Uewne) <a: n (V* -U Fz«))

j=1 k=1

where o; = (V, R;) is the splicing scheme associated to the i'" tube of the system.

In words, this means that the computation consists from two sub-steps which
are repeated iteratively. During the first sub-step, the one of computing, each tube
evolves as an ordinary H system. During the second sub-step, the one of commu-
nication, molecules which are present in each tube are sent to all tubes. Molecules
which can pass a filter of a tube, i.e. which are composed only from the letters
which form the set of the filter, remain in the corresponding tube and form the ini-
tial language for the next step of computation. If a molecule can pass several filters,
each of corresponding tubes receives a copy of this molecule. The molecules which
cannot pass any filter remain in the tube where they were produced. This protocol
is inspired from the theory of formal distributed grammars and it may change when
we consider different variants of test tube systems.

The language generated by a test tube system A consists of all words over the
terminal alphabet produced by the system at some step and which are in the first
tube.

L(A)={w e T*w € Ly,3Ly,...,L, CV*: (Ay,..., A) =(L1,...,L,)}.

We note that by definition test tube systems do not have elimination of molecules,
i.e. once produced they exist forever. But a molecule may leave the tube in which
it was produced if it can pass a filter of another tube and in the same time it cannot
pass the filter of the tube in which it was produced.

We denote by T'T,, the family of languages produced by test tube systems having
at most n tubes.

It is easy to see that test tube systems with one tube are extended H systems.
So, we obtain the following result:

Theorem 7.1.1. TT} = REG.

If we consider more tubes, then we obtain a bigger computational power. Three
tubes are sufficient in order to generate all recursively enumerable languages, see [34].

Theorem 7.1.2. [3}/ TT3 = RE.

7.1. TEST TUBE SYSTEMS 85

As for test tube systems with two components, the problem of their computa-
tional power is still open, but as shows the following example they can generate
non-regular languages.

Example 7.1.1.

We take the example given in [5] et [44].
Consider the following system.

I'= ({G/, b) c, d7 6}7 {G/, b) C}, (A17R17 Vl)? (AQa R27 V2))a

Ay = {cabe, ebd, dae},
Ry = {b#cSe#bd, da#e$Sctal,

Vi ={a,b,c},
As = {ec, ce},
Ry = {b#dSetc, c#eSd#al,
Vo = {a,b,d}.

The only possible splicings in the first tube are the following:

(x1blc, e|bd) by (x1bbd, ec), pour x1 € {a,b,c,d, e},
(dale, claxs) Fo (daazs,ce), pour zg € {a,b,c,d,e}".

We see that these application permit to add an a, respectively a b, to words
of form caxs, respectively x1bc, and they replace in the same time ¢ by d. Now
let ca™b™c, n,m > 1 be a word in the first component (initially n = m = 1). By
using rules of the first tube we can produce the word da™*'b™*1d which is sent
to the second tube. We note that both rules of R; must be used, otherwise the
word will contain the symbol ¢ and it cannot pass the filter of the second tube.

In the second tube we have the following applications:

(aa'V?|d, elc) 1 (aa'Ve,ed), o€ {c,d},
(cle,d|a’t @) 5 (ca’V o, de), o € {c,d}.

Only the word ca’b’c is sent to the first tube.
The process above can be iterated and, by consequent, we obtain:

L) ={ca™b"c|n > 1},

which is a context-free language.
Therefore, we have the following result:
Proposition 7.1.3. TT, \ REG # 0.

The authors in [5] and [44] suppose that the family of languages generated by
test tube systems with two tubes is included in the family of context-free languages.

86 CHAPTER 7. TEST TUBE SYSTEMS WITH ALTERNATING FILTERS

7.2 Test tube systems with alternating filters

Definition 7.2.1. A test tube system with m alternating filters and n tubes is the
following n + 2-tuple:

r= (V.7 (A, By B EY) (A Ry B,),

where V', T, A; and R; are defined as in the case of test tube systems. Now instead
of a filter F; for each tube i, we have an m-tuple of filters FZ-(T), 1 < r < m, where

each filter FZ-(T) is defined as in the case above.

At each step k > 1, only the filter Fi(r), r=(k—1) (mod m)+ 1, is active, i.e.
to be used, for the tube i.
We define the transition between two configurations as follows:

where o; = (V, R;) is the splicing scheme associated to the i" tube of the system.
The obtained systems are very similar to test tube systems. The only difference is in
the fact that instead of an unique filter F; we have an m-tuple of filters Fi(l) e Fi(m)
and the filter to be used depend on the number of steps which were done.

The language generated by I' is the following:

L(D) = {we T*3k : w e L}

We say that I' generates the empty language if for all k, the set Lgk) does not
contain any terminal word.

We denote by T'T'F, ,, the family of languages generated by test tube systems
with alternating filters having at most n tubes and m filters.

7.2.1 The computational power of TTF,,

In this section we shall present a TTF system with two components and two filters
and which simulates a type-0 grammar. Moreover, both filters of the first component
coincide.

Theorem 7.2.1. Let G = (N,T,P,S) be a type-0 grammar. Then, there is a
test tube system with alternating filters having two components and two filters, T,

defined by I' = <V, T, (Al, Rl,Fl(l),Fl(Q)), (Ag, Ro, F2(1), F2(2))>, which simulates G
and L(T') = L(G). Moreover, Fl(l) = FI(Q).

7.2. TEST TUBE SYSTEMS WITH ALTERNATING FILTERS 87

Proof. We construct I' as follows.
Let NUT U{B} ={a1,a2,...,an} (B=a,) and BZ NUT.
In what follows we assume that:
1<i<nae NUTU{B},be NUTU{B}U{¢},v€{a,}.
The alphabet V' is defined by:
V=NUTU{B}U{a,BtU{c}U{X,Y, X, X3, X}, Y0, Y., Y3, Z,2'}.
The terminal alphabet 7' is the same as for the grammar G.
The components of the system are defined as follows.

Tube I:
Rules of Rjy:
L1 s 12: i 1.3:%@; ;
A PREATIA
Filters:

F=FY=F% = NUTU{B}U{a,B} U{o} U{X,Y, X, Y,}.
Axioms of Aj:

(XBSY, ZBa'Y., Z o Yy, Xof3Z, X562, ZY3, XoZ, X382, ZY.} U

{ZvY : Ju — v € P}.

Tube II:
Rules of Rs:
2-1:%’%; 2.2:%’%; 23: gf ;
2.4 X‘fziﬁ = 2.5;%; 26— 056’6 ;
Filters:

F{V = NUTU{B} U{a, B} U{o} U{Xa, Y.},

FY = NUTU{B}U{a,B} U{o} U{Xz,V3}.
Axioms of As:

{ZY0, X, aZ,ZY,Xa;Z,7Z'}.

We affirm that L(I') = L(G).

We shall prove this assertion in the following way. First we show how we can
simulate the derivations of the formal grammar G. In this way we prove that L(G) C
L(T"). In the same time we consider all other possible evolutions and we show that
they do not lead to a terminal string. By consequent our assertion will be proved.

Our simulation is based on the “rotate-and-simulate” method, see Section 4.1.2.
We use a technique similar to the one used in |34, 42, 44|, see also Theorems 4.3.1
and 5.2.2. We rotate the word Xwa;Y in three steps. First we encode a; into o’
and we obtain X,BwBa’~1Y.. After that we transfer o from the right end of the

88 CHAPTER 7. TEST TUBE SYSTEMS WITH ALTERNATING FILTERS

word to its left end. Finally we decode Ba’3 into a; and we obtain Xa;wY. More
exactly, we start with the word Xwa;Y in the first tube. The second tube receives
XoBwBa’~1Y! from the first component. From this moment the system works in a
cycle where one « is inserted at the left end of the word and in the same time one
« is erased from its right end. The cycle stops when there is no more « at the right
end. After this we obtain the word Xgﬁo/ﬂng in the second component and we
can decode a; obtaining Xa;wY .

If we have the word XwBY, then we can take off symbols X, ¥ and B producing
w which will be a part of the result if it is terminal.

Notations

We note that the bottom part of each rule represent a molecule which is already
present in the corresponding tube. Similarly, one of results of the splicing will contain
7/ and will not participate any more to the production of the result. Therefore we
can omit these molecules and write:

Xwa;Y ErY XwBa~1Y! instead of

(Xw|a;Y, Z|fai=Y])) Fio (XwBai=tY! Za;Y)
where by | we highlighted the splicing sites. In what follows we mark molecules
which can evolve in the same tube with ® and we mark molecules which must be
send into the first, respectively second, tube with @, respectively @. We also write
m T if the molecule m cannot enter any rule of the tube in which it is situated and
if in the same time it cannot be sent to another tube.

We shall show the evolution of words of form Xwa;Y. We indicate the splicing
rules which are used as well as the resulting words. We note that, due to the
parallelism, in the same time in our system there can be several molecules of this
form or intermediate forms which evolve in parallel. These molecules do not interact
with each other, so we shall concentrate only on a single evolution of this type.

Rotation

We show how to rotate the word Xwa;Y which is in the first tube.
Step 1.
Tube 1.
Xwa;Y ® rY XwBa~1Y! ® - XoBwBai~Y! @.
We can use these two rules in opposite order which gives the same result. We can
also use rule 1.5 instead of the last application. This gives us:
XwBa~1Y! ® - XpBBwpa Y. 1.
We can also have the following application:
Xwa;Y ® T Xpppwa;Y ®.

The molecule X,BwBa~1Y/ is sent to the second tube because it can pass the
filter F2(1); all other molecules cannot pass any filter of the second tube.

7.2. TEST TUBE SYSTEMS WITH ALTERNATING FILTERS 89

As we noted before there are other applications of splicing rules on other mole-
cules but they are not relevant for our evolution. We shall not mention this fact in
the future.

Tube 1.

As we noted before there are other applications of splicing rules on other mole-
cules but they are not relevant for our evolution. We shall not mention this fact in
the future.

Step 2.

Tube I1.

XofwBai~tY! ® o XopwBa 1Y, ® vy X! apwBai=lY, O,

Only molecule X! aBwBa’~1Y, can pass filter F}.

In this way we transferred one a from the right end to the left end.
Step 3.

Tube I.

X! apwpai=lY, ® ey X! apwBai—2Y! ® - XoafwBai=2Y! @,
We can also have the followmg apphcatlons

X! apwBai=ty, ® T XgBaBwpBat~1Y, ® Y XgBafwBai=2Y) 1.

Only the word X,afBwBa’~1Y,! can pass the filter F2(1).

Step 4.

Tube I1.

XpaBwpai =2y, ® -7 Xoofwpal~2Y, ® =7 X! aafwBai=2Y, ©.

Only the molecule X! aaBwBa’~2Y, can pass the filter F}.

In this way we transferred one more « from the right end to the left end. We
can continue in this way until we obtain for the first time X/ a’Bw3Y, in the second
tube at some step p. This molecule is communicated to the first tube where we can
use the rule 1.6 and we complete the rotation of a;.

Step p+l.

Tube 1.

X! o BwBY, ® vy X! o' pwYs ® ey XpBaifwYs @

We can also have the following apphcatlons

X! o BwBY, ® - Xoo' fwBY, ® - Xaa!wYs 1.

Only XpBa'BwYy can pass the filter F2(2). We also note that p+1 is an odd
number. Therefore, the molecule XgBa'BwYs will remain for one more step in the
first component, because the filter used in the second component during odd steps
is FQ(I). During the next step, p+2, this molecule will not change and it will be
communicated to the second tube because the new filter FQ(Q) permit its passage.

Step p+3.

Tube 1.

XgBaifwYs ® eV XajwYs® Yy Xa;,wY O,

The word XaZwY is sent to the ﬁrst tube.

In this way we competed the rotation of a;.

90 CHAPTER 7. TEST TUBE SYSTEMS WITH ALTERNATING FILTERS

Simulation of grammar productions

If we have a molecule XwuY in the first tube and there is a rule u — v € P then we
can apply rule 1.1 in order to simulate the corresponding production of the grammar.

Obtention of the result

Now we shall show how we can obtain a result. If we have a molecule of type XwBY,
then we can perform a rotation of B as described above. We can also take off X
and Y. In this way, if w € T%, then w will be a part of the result. Now we shall
show how to do this. Suppose that XwBY appears for the first time in tube 1 at
some step q (it is easy to check that q is even).

Step q.

Tube 1.

XwBY ® —> XIUOY5® —> Xﬂﬂﬂﬂ)OYg@)

We can also have the followmg application:
XwOY[g@ ﬁ Xa,BwOY@ T

The word XgBBw ¢ Y can pass the filter F2(2).
Step q+1.
Tube II.

If w e T*, then 1t will be a part of the result. O

7.2.2 TTF,, with garbage collection

In this section we shall present a TTF system having two components and four
filters. Moreover, this system contains no rules in the second component, therefore
it is used only as a garbage collector. We also add that all filters in the second tube
are the same.

Theorem 7.2.2. Let G = (N,T,P,S) be a type-0 grammar. Then, there is a test
tube system with alternating filters having two components and four filters, I, defined

by I' = (V, T, (Al,Rl,Fl(l), .. .,F1(4)), <A2,R2,F2(1), . .,F2(4)>) which simulates G
and L(T') = L(G). Moreover, the second component of T' has no rules, i.e. Ry =10,
and also F2(1) == F2(4).

Proof. We construct I' as follows.
Let NUT U{B} = {a1,a2,...,an} (B=a,) and BZ NUT.
In what follows we assume that:
1<i<n,1<j<4,ae NUTU{B},be NUTU{B}U{o},v € {a, 5}
Alsolet V= NUT U{B}U{a,B} U{c}.
The alphabet V is defined by:
V=VU{X,Y, X, Xp, X}, Y0,Y., Y3, 2,2, Z;, R, L;}.
The terminal alphabet 7' is the same as for the formal grammar G.
The components of the system are defined as follows.

7.2. TEST TUBE SYSTEMS WITH ALTERNATING FILTERS 91

Tube I:
Rules of Ry:

e | uY X a X a
1.1.1: ; 1.1.2: ; 1.1.3: ;
Ry | vY XaoB | Ly XpBp | L1
a a;Y) _a | BY
]..]..4 . R—lm’]..]..5 . Rl OYB 9

1.2.1: };2 }% ; 1.2.2:%22 ;

1.3.1:—’—% LO; : 1.32: ;(B&ﬂ LO‘S : 1.3.3:]’%73 O‘Y? ;
134 ;’3 @Y; ,

1.4.4;%0?3 :

11 p 112)%15 2 ngﬂ 4,
114" g ﬁole; : 115 - gi <>LY1ﬁ

121]Zé 2 ; 29)%Qa fz |

1.3.1": iﬁg fz ; 1.3.2":);ff fz ; 1.3.3';"72 ﬁ :
1.3.4": }Z%z }Lfi :

1.4.1 gi Z : 1.4.2’:%; 1,4.3/:%’%;
Filters:

FY =V U{X,,Y!, Ry, Ly},
F» =V U{X!,Ya, Rs, Ls},
F1(3) =)YVu {Xﬁ, Yg, Ry, L4},
FY =VU{X,Y,Ry,L1}.
Axioms of Aj:
{XBSY, XoB21, X38B21, Z180Y., Z o Y3, ZoYe, X0 Zs,
XoZ3, X373, ZsY., 2V, Z4Y, X a; Z4, Z' Zs, Ry L1 } U
{ZvY : 3u — v € P}.

92 CHAPTER 7. TEST TUBE SYSTEMS WITH ALTERNATING FILTERS

Tube II:

No rules: Ry = 0.

Filters:

FY = VU{X,Y,Xo, X5, X!, Y, Y., Y5, Z'\R;, L;}.

Axioms of As:

{RaLo, R3L3, RyL4}

The system is similar to the system constructed in the previous section. It
contains the same rules which are grouped in the first tube. The rules are split
into four subsets, 1.1.x to 1.4.x, which cannot be used all in the same time. In
order to achieve this we use the method of directing molecules, see Chapter 6 and,
in particular, Section 6.4. We use directing molecules R;L; which travel from one
tube to another. When a molecule R;L; appears in the first tube it triggers the
subset j of rules which can be further applied. More precisely, the bottom part
of each rule is made in a special way: the site corresponds to a directing molecule
which is produced only if the molecule R;L; corresponding to the subset is present
in the first tube. For example, the rule 1.1.3 can be used only if molecule Xg35L;
is present. But this molecule is present only if the word R;L; is present in the first
tube and it is produced by applying the rule 1.1.3" to the axiom X337 and to the
directing molecule R1Lq. At the next step the word Xg33L; is sent to the second
tube and it is no more present in the first one.

So we have a nesting of directing molecules. Directing molecules of the first level
which correspond to sites of rules are created by the mean of directing molecules of
the second level, R;L;, which travel from one tube to another and their apparition is
directed by alternating filters. The filters also act like selectors for correct molecules
and the computation is made in the following way: the molecules are sent into
the second component from which correct molecules are extracted into the first one
where they are further transformed.

O

We observe that operations done in the first and in the third group are indepen-
dent and that molecules which are used have a different form. Therefore, we can
join the first and the third group as well as corresponding filters 2 and 4. Thus we
obtain:

Theorem 7.2.3. Let G = (N,T,P,S) be a type-0 grammar. Then, there is a
test tube system with alternating filters having two components and three filters,

T, defined by T = <V,T, <A1,R1,F1(1),...,F1(3)>, (AQ,RQ,FQ(”,...,FQ(?’))) which
simulates G and L(T') = L(G). Moreover, the second component of I' has no rules,
i.e. Ry =10, and also F2(1) =...= FQ(S).

7.2.3 TTF,, with garbage collection

In this section we shall present a TTF system with two components and two filters
and which has no rules in the second component. Moreover, the two filters of each

7.2. TEST TUBE SYSTEMS WITH ALTERNATING FILTERS 93

component differ only in one letter. Also the proof of this result is different: we
simulate a Turing machine instead of a Chomsky grammar.

We define the coding function ¢ as follows. For any configuration wiqwsy of a
Turing machine M we define ¢(wiqws) = Xw1SqweY, where X,Y and S are three
symbols which are not in T'.

We also define the notion of an input for a TTF system. An input word for a
system I is simply a word w over the alphabet of I'. The computation of I' on input
w is obtained by adding w to axioms of the first tube and after that by making I"
to evolve as usual.

Lemma 7.2.4. Let M = (Q,T,ao, so, F,0) be a Turing machine and w an input.
Then, there is a test tube system with alternating filters having two components and
two filters T = (V, Tr, <A1,R1,F1(1),F1(2)>, (AQ,Rg,FQ(”,FQ(Q))) which, given the

input ¢p(w), simulates M on input w, i.e. such that:

1. for any word w on which M halts in configuration wiqws, the system I' produce
a unique result ¢(wiqws).

2. for any word w, on which M does not halt, the system I' generates the empty
language.

Proof.

Let T = {ag,...,am-1}, @ = {90,---,qgn-1}, a € TU{X}, b,de € T, c €
TU{Y}, q € Q, where ag is the blank symbol.

We may assume without loss of generality that wjws does not contain the symbol
ao and that M is not stationary.

We construct I' as follows:

The alphabet V is defined by:
V=TUQU{X,Y,S,S" R L,R,L',RF ZE Zx Zv RE ZL R} Z|}.

The terminal alphabet T is defined by:
Tr =T \{a} U{X,Y,S}U{q:q€ F}.

The components are defined as follows:

Tube I:
Rules de R;:

For any rule g;apRa;q; € § we have the following group of 4 rules:

aSqia, | Y a | Sqiaxb
T e e 2

RSq;ay, | b a L
1.1.1.3. R{aalslq‘j ‘ Z{% s 1.1.1.4. R1 bS/qd ’

1.1.1.1.

94 CHAPTER 7. TEST TUBE SYSTEMS WITH ALTERNATING FILTERS

For any rule g;ajLa;q; € 0 we have the following group of 5 rules:

X | Sqag b | dSq;ax RbSq;ay | ¢
1.1.2.1. Xao | Zx 1.1.2.2. ?’T’ 1.1.2.3. RlLS’qual|Z1L’

;X | bSqay b L
1.1.2.1". —Xao 7ZX 1.1.2.4. R SFqdec

We have also the following group of 3 rules:

ab | S’qd R'S" | gb b | L
121 S0 122 “pre g 123 —prtela

Finally, we have the following group of 3 rules:

b a()Y Xao b XCLO S
1.3.1. T’T, 1.3.2. T’W, 1.3.3. T’?.

Filters:
FY = (R L, L'},
F® ={R,L, '} = (F}\ {R'}) U{R}
Axioms of Aj:
{Rya()Y, XaogZx, RﬁSZi, RL} U {R{?alS’quF : ElqiakRalqj S (5} @]
{RES'q;bay ZE : 3qiar. Layg; € &Y.

Tube 1I:
No rules: Ry is empty.
Filters:
F{Y =QUTU{X,Y,S,R, L, R, L', RF, RE, R},
FY =QUTU{X,Y,S R L R ,I',RF,RE R} = (F} — {S}) U {5}
Axioms of As:
{R'L'}.

The part of tape of M which contain the information is encoded in the following
way: for any configuration wiqws of M we have a configuration Xw;Squws2Y in
system I'. So, the tape is enclosed by X and Y and we have a marker S¢; which
marks on the tape the head position and its current state.

The system I' simulates each step of M in 2 stages. During the first stage it
simulates a step of the Turing machine and it primes the symbol S by using rules
1.1.2.2 to 1.1.z.4. We say that these rules are associated to the corresponding rule
of the machine M. During the second stage the system takes off the prime from
S’ by using rules 1.2.xz. If necessary, the tape can be extended by rules 1.1.z.1 or
reduced by rules 1.3.x. The system produces a result only if M halts on the initial
string w.

In order to achieve the separation in 2 stages we use two subsets of rules in the
first tube as well as directing molecules RL and R'L’ which appear alternatively in

7.2. TEST TUBE SYSTEMS WITH ALTERNATING FILTERS 95

the first and the second test tube by triggering the first (1.1.z) or the second (1.2.x)
subset of rules, see also Section 7.2.2 and Chapter 6. All extra molecules which are
of the wrong form are sent to the second test tube which is considered as a garbage
collector because only the directing molecules RL and R'L’ may go from that tube
to the first one.

The molecules RyaogY, Ria;S'q;Z%, XagZx, R¥S'qjba;Z¥ and R} SZ; are pre-
sent all the time in the tube 1. Also, all molecules containing the symbol Z with
indices remain in the first tube.

We start with XwiSqowsaY in the first tube, where wiqows is the initial config-
uration of M.

The simulation

We shall describe the simulation of the application of rule g;arRa;q; € 6 to config-
uration XwiS¢;arwoY. We shall omit from our description the molecules Ry agY,
REa;S'q; ZE, XagZx, RE¥S'qjbaiZF and R|SZ| which are alway present in the
first tube. Similarly, molecules containing Z with indices and which do not alter the
computation will be omitted from the description after one step of the computation.

We also note that the second tube may contain other molecules, obtained during
the previous steps, as it works as a garbage collector. We shall omit these molecules
as they do not alter our simulation.

Step 1.

Splicing:

Tube 1:

We have: XwiSq;arw2Y, RL.

We apply the following rules which are all from group 1.1.1.z:

(Xwi|Sgiarw2Y, R|L) F11.1.2 (XwiL, RSq;arwaY).

(RSgiak|w2Y, RRa;S"q;| ZF) 1113 (RE@ S qjweY, RSqiar ZF).

(le ‘L, R{%’CLZSIQJ'IUQY) F1.1.1.4 (lealS’quQY, R{%L)

Tube 2:

We have: R'L’. As it was said above we can have here other molecules obtained
during previous steps of computation and which do not alter the computation. We
omit them and we do not mention this in the future.

No application of rules.

Communication:

Current filters are:

FY ={R,L,I'} et F\Y =QUTU{X,Y,S,R,L, R, I/, RF, RE R!}.

Molecules sent from tube 1 to tube 2:

RL, Xw Sqiarw2Y, Xwy L, RSq;apw2Y, REL.

Molecules remaining in tube 1:

REa;S"qjweY, RSqar Z8, Xwia1S'qjwaY.

Molecules sent from tube 2 to tube 1:

R'L.

Molecules remaining in tube 2:

96 CHAPTER 7. TEST TUBE SYSTEMS WITH ALTERNATING FILTERS

None.

The molecule RSg;arZ¥ cannot evolve further, so we shall omit it in the future.
Also, the molecule Rf*a; S’ gjw2Y will be sent from from the first tube to the second
tube during the next step.

Step 2.

Splicing:

Tube 1:

We have: R{%alS'qugY, Xwia;S'qjwrY, R'L'.

We apply the following rules which are all from group 1.2.z:

(leal|S’qu2Y, R’|L/) |_1.2.1 (lealL’, R,S/quQY).

(R/S/|ij2Y, RQS‘ZD |—1.2,2 (R&qung R/S/Zi).

(Xw1a1|L’, Rll |Sij2Y) |—1_2.3 (lealquwQY, RllL/).

Tube 2:

We have: XwiSqapwY, RL, Xwy L, RSq;apwY, R| L.

No application of rules.

Communication:

Current filters are:

FY ={R,L,I'} et F\Y =QUTU{X,Y,S R, L R,L' RE,RE R|}.

Molecules sent from tube 1 to tube 2:

R/LI, RlRalS'qugY, lealS’qugY, lealL’, R'S’qugY, RllL/.

Molecules remaining in tube 1:

R'S'Zy, Ry SqjwrY, Xwia;SqjwaY.

Molecules sent from tube 2 to tube 1:

RL.

Molecules remaining in tube 2:

R'L', REa;S'qjwaY, Xwia;S'qjwaY, Xwiay L', R'S' qjwaY, R L,
leSqiakng, leL, RSqiakng, R{%L.

Similarly, the molecule R} Sgjw2Y will be sent from the first tube to the second
tube during the next step.

Thus we simulated the application of the rule g;a;Ra;q; of the machine M. It
is easy to observe that if we = ¢, then we first apply the rule 1.1.1.1 in order to
extend the tape to the right and after that ws = ag. We note that the application
of rules of extension or restriction of the tape produce several copies of the main
molecule which codes the state of the Turing machine. These copies differ in the
number of symbols ag situated at their ends and they do not alter the computation,
even if the rules 1.1.z.4 are applied to parts issued from different molecules. We
also remark that there is a only one molecule which does not contain any symbol
ag at its ends. It is also easy to check that produced molecules which do not have a
correct form (XwiSqarwaY, Xwi L, RSqarwsY, REL, R{%alS'qugY, RSqap ZE,
XwiapS'qywaY, R'S'qywoY, R'S'Zy, R\SqjwY, Xwia;S'qjwY, Xwia;L') either
go to the second test tube or do not alter the computation.

For the left shift rules we proceed in a similar manner, except that we ensure
that there are at least 2 symbols at the left of S.

7.2. TEST TUBE SYSTEMS WITH ALTERNATING FILTERS 97

We see that we model step by step the application of rules of M. It is easy to
observe that this is the only possibility for the computation to go on as the molecule
which encodes the configuration of M triggers the application of rules of T'.

O

Theorem 7.2.5. Let L C T be a recursively enumerable language. Then, there is
a test tube system with alternating filters having two components and two filters T,

defined by I' = (V, T, (Al,Rl, Fl(l), Fl(Q)), (Ag, RQ,FQ(I),F2(2)>>, which generates L,
i.e. L= L(T"). Moreover, Ry =).

Proof. For the proof we use ideas similar to the ones used in [24] and [26].

Let £ = {wo,wy,...}. Then there is a Turing machine 7 which computes
w;0...0 starting from 017! where 0 is the blank symbol.

It is possible to construct such a machine in the following way. Let G be a
grammar which generates £. Then we can construct a Turing machine M which
will simulate derivations in G, i.e., we shall obtain all sentential forms of G. We
shall simulate bounded derivations in order to deal with a possible recursion in a
derivation. After deriving a new word the machine checks if this word is a terminal
word and if this is the case it checks if this word is the i-th terminal word which is
obtained. If the last condition holds then the machine erases everything except the
word.

Moreover, this machine is not stationary, i.e. the head has to move at each step,
and it never visits cells to the left of the 0 from the initial configuration, #.e. the
tape is semi-infinite to the right. In the book [18] it is possible to find ideas how to
satisfy these conditions. So, the machine T, transforms configuration ¢o01*+! into
q fka ...0.

Now starting from the machine T, it is possible to construct a machine 77
which computes 01k+2Mq}ka ... 0 starting from go01%**1. After that, by using T
we cut off wy, and we continue the computation from the configuration go01%+2. In
this way we will generate £ word by word.

In order to simplify the proof we consider the machine T which do the same
thing as T}, but at the end move its head to the right until the first zero, i.e. it
will produce 01k+2kaq3ﬁ0. ..0 from qo01¥*!. We also use two additional Turing
machines 77 and 75 having the tape alphabet of T/ extended by the set {X,Y, S}
The first machine, 77, moves to the left until it reaches M and then stops in the
state q}‘. The initial state of 77 is ¢}. The second machine, T, moves to the left
until it reaches 0 and then stops in the state gg. The initial state of this machine is
¢

Now let us consider I" which is very similar to the system constructed in the
previous lemma. In fact, we take machine T} and we construct I" for this machine
as it was done above. After that we take the rules of 77 and 75 and we add to I' all
associated splicing rules as well as the axioms which correspond to them. Finally
we add the following splicing rules:

98 CHAPTER 7. TEST TUBE SYSTEMS WITH ALTERNATING FILTERS

a | bdSq¢’0 e | 11Sq;M , Xo11S¢;M | ¢
z.1. , x.2. 5 , x.2'. ;
Zy | Sqsbd X, | eSq¢;11Y € | Z

where e = {0, 1}.

We also add Xqo01Y, as well as the words Z1S5¢ bd, X2eS¢?11Y and Z' to
axioms of the first tube and we consider T" as terminal alphabet.

We shall show that we succeeded to implement the mechanism of generation of
words which we presented before.

We claim that I' generates £. First of all this system simulates the machine
T7 so it permits to pass from the configuration X Sqo01**1Y to the configuration
X01k+2kaSq;{ ...0Y. Now we can use the rule x.1. This rule cuts off the word

0...0Y which is sent to the second tube and only the molecule X01%+2As wkSq;ab
(wy, = wj.ab) remains. We note that now we can simulate the work of 77, because the
only condition which must be satisfied is the presence of one symbol at the right from
the head position. Therefore, starting from this moment the system I" will simulate
the work of 77 and we will arrive to the following molecule: X 01k+23q}M wg. Now
the rules z.2 and x.2' cut off wj, which will represent the result and we will obtain
the molecule X01¥S¢211Y. In a similar way we can simulate the work of 75 and
we will arrive to configuration X Sqo01*t2Y. Now we can restart the computation
above and to produce wg1, by consequent, we shall produce all words from L.

O

7.3 Conclusions

In this chapter we have seen the power of elimination. Indeed, as it was shown by
examples in this chapter, it suffices to add a possibility of elimination to extended
H systems in order to let them to acquire a big computational power. The directing
molecules also play an important role. We have seen that by using them it is possible
to refine the control of a TTF system with two tubes to a such extent that we do
not need to have rules in the second tube any more.

The control of test tube systems with alternating filters is very powerful and it
permits to apply easily the method of directing molecules. In the next chapter we
show another example of utilisation of this method for systems which have a much
more delicate control.

Chapter 8

Modified test tube systems

In this chapter we continue the study of test tube systems and we introduce another
variant of them. As before we make changes at the level of the protocol of commu-
nication, but this time we do not add any additional ingredient. The modification
which we make concerns molecules which may go out from a tube. In this case we
do not permit any more to these molecules to remain in the initial tube, even if they
can pass its filter. By consequent, we can control to a certain extent the elimination
of these molecules. The obtained control is much more delicate than the control by
alternating filters and it requires a careful manipulation. We show that two tubes
suffice in order to produce all recursively enumerable languages. The method of
directing molecules play an important role in the proof of this result which is very
difficult to obtain in another way. Another interesting particularity of the obtained
system is that the process of elimination is not static as in the case of test tube
systems with alternating filters where we send incorrect molecules to another tube
where they cannot evolve any more. In our case this process is dynamic and the
eliminated molecule travels from one tube to another without having the possibility
to participate in a splicing because during the corresponding step it cannot enter
any active rule.

8.1 Modified test tube systems

Definition 8.1.1. A modified test tube system with n tubes is the following con-
struction:

I'= (V)Tu (A17R17F1)7 ey (ATHRTL)FTL))a

where V', T, A;, R; et F; are defined like in the case of a test tube system.

Modified test tube systems and the systems described in the previous chapter
have a different communication protocol. More exactly, we define the transition
between two configurations in the following way:

(Li,...,Ly)=(LY, ..., L)) iff

99

100 CHAPTER 8. MODIFIED TEST TUBE SYSTEMS

Li=|Uo@)nF | u (Uf(Lz‘)” <V*_ U Fg)) '
j=1
J#i

k=1

We see that in the union in the first parenthesis the case j = ¢ is excluded.

In words this means that if a molecule can pass a filter of a tube different from
the tube where it was produced, then this molecule do not remain in the initial tube,
even if it can pass its filter. This modification permits to organise an elimination of
molecules and, consequently, to apply the method of directing molecules.

This definition is applicable in the case were we have at least two tubes. When
n =1, we consider, by definition, that L] = o](A1).

We denote by TT' M, the family of languages generated by modified test tubes
systems having at most n tubes.

We remark the following property of the systems introduced above. Let I' be
a modified test tube system having 2 tubes. Let M be a molecule which can path
filters of both tubes. Suppose also that initially it is situated in tube 1. It is easy
to see that after the first step of computation M is sent to the second tube and
no copy of M remains in the first tube. At the next step M returns to the first
tube because it can pass its filter and no copy of M remains in the second tube.
Therefore, at each step M changes the component, i.e. it appears in each tube with
a period equal to two. So, in this way it is possible to create directing molecules
with a period equal to 2 and whose apparition is directed by the control, see also
Section 6.4.

Theorem 8.1.1. Let G = (N,T,P,S) be a type-0 grammar. Then, there is a
modified test tube system having two tubes, I' = (V,T, (A1, R1, F1), (A2, Ry, F»))
which simulates G and L(T") = L(G).

Proof. We construct I' as follows.
Let NUT U{B} ={a1,a2,...,an} (B=a,) and B¢ NUT.
In what follows we assume that:
acVUTU{B},beVUTU{B}U{a}, ce Vs, ve{a B}
Consider Vs =V UTU{B}U{a, [}
Consider also Vap = {Az, Bz },x € {X30,Y5, X[, Y, X, Y, Xoa, Yo, X', YV'} and
Vep = {Dy,Cy}, where z € {X, Xéﬂ,X;,Xaa,X’} and y € {Y.,Y, Yﬁ’,Ya,Y’}.
The alphabet V is defined by:
V=VsUVapUVecpUu {Zx, 2By, ZmZYiyZXi} U
{X,Y, X’,Y’,Xa,Ya,Xﬁ,Yg,XC’X,YCC,Xé,Yﬁ’}.
The tubes of the system are defined as follows.
Tube I:
Axioms of Aj:
{XBSY}U{ZUUY U —vVE P}U{CYAYOINXD)(, CyY, X//GﬁDXéﬂa CYB’Y/@/aX(/xDX(’X}U

{ZyiﬁOéiY, XaiZXi, Zyﬁylg} @] {AYCIEBYO/t7 BXA)(} @] {BX(XAXaa AyaBya, AY’BY’}-

8.1. MODIFIED TEST TUBE SYSTEMS 101

Rules of Ry:
e |uY a | Y] Xpal| a - a | pY
1.3.1: 7. oy 1.3.2: 7y | Baiv 1.3.3: Xai | Zx. 1.3.4 7y, | Vs
7 | Ya X" v
1.1.1 Ay Y7 1.1.2 X Ay
X a a | Y3 Xol| b c | Y
1.2.1 1.2.2 1.2.3 1.2.4
X,/gﬁ AXéﬁ Ay Ylg X! | Axs Ay | Y
x| Dy Cyl vy
BA.x: B A, VzD, € Aq, AB.y A, (B, VCyy € Ay
Filter Fy:
‘/5 U VAB U {Xocu YOMX,)Y/}'
Tube I:
Axioms of As:
{XaaDXaou Cy,Ya, Cy'Y’, X/DX/} U {Zx, ZBy} @) {BX/AX/} @)
{Bx; Axy, Ay By, Bx; Ax;, Ay By }.
Rules of Rs:
X| a € BY
2.3.1: 2.3.2:
3 g ZX 3 ZBY 3
X b v |aY v |Y! a |Y)
2.1.1: 2.1.2: 2.1.3: @ 21.4:
Xaoz AXaa Aya Ya 3 Ay/ Y/ Ay/ Y/
. Xo| b Xp| B
2.2.1 X' [Ay 2.2.2: X [Ac
z | Dy Gyl oy
BA.x B A, VaD, € As, AB.y: A, (B, VCyy € Aa
Filter Fy:

Vs UVap U{X,Y, Xé, Yﬁ/, XY X, Y}

We claim that L(I') = L(G).

We shall prove this assertion in the following way. First we show how we can
simulate the derivations of the formal grammar G. In this way we prove that L(G) C
L(T"). In the same time we consider all other possible evolutions and we show that
they do not lead to a terminal string. By consequent our assertion will be proved.

Our simulation is based on the “rotate-and-simulate” method. We use the same
ideas as the ones used during the proof of Theorem 7.2.1. More precisely, we rotate
the word Xwa;Y in three stages. First, we encode a; by Ba’ and we obtain XwSa'Y .
After that we transfer o from the right end of the word to its left end and we obtain
X BaiwY . Finally we decode Bat into a; and we obtain Xa;wY .

In order to implement the above procedure we use the method of directing
molecules, see Chapter 6. We consider two types of directing molecules. Direct-
ing molecules of the first type that direct the application of rules are of the form

102 CHAPTER 8. MODIFIED TEST TUBE SYSTEMS

xD, or Cyy. They are created by nesting by the mean of directing molecules of the
second type. Directing molecules of the second type are of form A,B, or B, A, and
they are created by the control in the following way. Filters of both tubes permit
the passage of these molecules, so they will appear in each tube with a period equal
to two, see also the considerations presented before. Therefore, we obtain that both
types of directing molecules appear with a period equal to two.

By using these directing molecules we separate the rules of the system in three
groups.

1. Rules of the first tube which are applicable only during an odd step and rules
of the second tube which are applicable only during an even step.

2. Rules of the first tube which are applicable only during an even step and rules
of the second tube which are applicable only during an odd step.

3. Rules of both tubes which are applicable at any moment.

We say that a rule is activated during a step when it is applicable and deactivated
during other steps.

The numbering of rules permits to know in which group the corresponding rule
is placed. More exactly, the first number of a rule indicates to which tube that rule
belongs to, while the second number indicates the group to which that rule belongs
to.

Indeed, the separation of rules in these groups permits to obtain the following
property: if a rule is applied to a molecule and if the result of this application is
sent immediately to the other tube where it is processed by some rule and after that
it is sent again in the first tube, then both rules which were used will be from the
same group.

Now we show in details how we activate rules of groups (1) and (2). We take as

le the rule 12.1: —r {2
example the rule 1.2.1: X[';ﬁ AX%[B .

In I there are the following objets which are associated to this rule:

In the tube I:

The axiom: XéﬂDXéﬁ.

The rules:

o1 X | @ Xsf | Dy

I
X575 AXLQB and BA.Xﬂ :
A part of the filter Fli BXé/B’AXéB
In the tube II:

The axiom: BXéﬁAXéﬂ‘

By | Axys

None rule.
A part of the filter Fb: Xé,BXéﬂ,AXéﬁ.
The directing molecule BXéﬁAXQ,,@ travels from one tube to another and it ap-

pears in the first tube only during an even step. By consequent, the directing
molecules of the first level X /gﬁA X/,8 appears in the first tube only during an even

8.1. MODIFIED TEST TUBE SYSTEMS 103

step and after its usage it is immediately sent to the second tube. This means
that the rule 1.2.1 is utilisable only during an odd step, because only the directing
molecule X éﬁA X4 matches its lower site. Therefore, we obtain that the rule 1.2.1

belongs to the group (2).

All other rules from groups (1) and (2) are defined in a similar way.

We note that rules of the third group are utilisable all the time, because their
lower site correspond to a molecule which is already present in the corresponding
tube and which cannot pass the filter of the other tube because it contains the
symbol Z with indices.

Notations

We note that the bottom site of each rule correspond either to a directing molecule,
or to a molecule which is already present in the corresponding tube. Similarly, one
of results of the splicing either contain the symbol Z with indices, so it cannot match
any rule, either it is sent to the other tube and it remains there forever, or it travels
at each step between two tubes and it does not alter the computation. This is why
we omit these molecules and we write:

Xwa;Y ey Xwpa'Y instead of

(Xw]a,zY, Zyl ‘ﬁOéZY) |—1A3.2 (Xwﬁo/Y, ZyZaZY)
where by | we highlighted the splicing sites. In what follows we mark molecules
which can evolve in the same tube with ® and we mark molecules which must be
send into the first, respectively second, tube with @, respectively @. We also write
m T if the molecule m cannot enter any rule of the tube in which it is situated and
if in the same time it cannot be sent to another tube.

We shall show the evolution of words of form Xwa;Y. We indicate the splicing
rules which were used as well as the resulting words. We note that, due to the
parallelism, in the same time in our system there can be several molecules of this
form or intermediate forms which evolve in parallel. These molecules do not interact
with each other, so we shall concentrate only on a single evolution of this type.

Rotation

We show how to rotate the word Xwa;Y which is in the first tube.
Step 1.
Tube 1.
Xwa;Y @ Py XwBa'Y @.
Tube 2.
No applications of rules.
Step 2.
Tube 1.
No applications of rules.
Tube 2.
Xwa;Y ® o wa;Y 1.

104 CHAPTER 8. MODIFIED TEST TUBE SYSTEMS

Xwa;Y ® T Xooawa;Y 1.

Xwpa'Y ® o wpha'Y ® . wpha Y, O,

XwBa'Y ® T Xoowpa'Y ® T XoaBpBa 1Y, ®.

The last two rules can be applied in reverse order, but this gives the same result.
Step 3.

Tube 1.
wBai~1Y, ® nE wPa Y @,
Xoowpfa' 1Y, ® e Xpawfa =Y ®,
Tube 2. h
No applications of rules.
Step 4.
Tube 1.
X oawpBa 1Y, ® Y X! awpBai~Y, ®
XpowBa=1Y! ® oY X! awBa~1Y! @
Tube 2. -
wPa Y ® — wpa Y’ ©
2.1.3
Step 5.
Tube 1.
wha Y’ @,
X! awpa' =Y, ® T X! awpa =Y. @,
Tube 2. h
X! awpa~Y! ® Y X' awpa =Y ®,

The word wBa’~'Y” is not changed because we are during an odd step and the
rule 1.2.4 is not activated. Therefore, it will travel from one component to another,
by consequent, it will not participate to the production of the result.

Step 6.

Tube 1.

No applications of rules.

Tube 2.

X! awpa' =Y, ® T X! awpa "Y' ®,

X' awpBat~ty! ® T X' awpa =Y’ @,

Step 7.

Tube 1.

X'awPBa 1Y’ ® TR Xawpfa' "Y' ®.
Tube 2. h

X! awpa "Y' ® Y X' awpa' "Y' @,
Step 8. h

Tube 1.

X' owpa' "Y' ® Y X' owfa Y ®.
Tube 2. -

8.1. MODIFIED TEST TUBE SYSTEMS 105

Xowpa—1Y'® T XoaowBa'~tY' O,

If i = 1, then we can also apply the rule 1.3.4, but this application will be
discussed later at the step 8i. Similarly, we will discuss later the evolution of words
of form X, wY"’.

Step 9.

Tube 1.

XyaawBa~Y' @,

X'awBai~lY ® 0 Xowpa~lY @.

Tube 2.

No applications of rules.

So, we rotated the word XwpBa' taY .

We continue in this way until we obtain the word Xa‘w3Y at the step 8i + 1.
In this case we have the following computation which we shall detail starting from
the previous step, 8¢, in order to show the application of the rule 1.3.4.

Step 8i.

Tube 1.

X'a'wfY ® — X'a'wYy ®.

Tube 2.

No applications of rules.

Step 8i+1.

Tube 1.

X'a'wY; ® 3 XalwY @,

X' o'wBY 0 Xa'wBY Y Xa'wYs 1.

Tube 2.

No applications of rules.

Step 8i+2.

Tube 1.

Xa'wYs ® — Xatiﬁ’ @,

, 1.2.2 '

Xa'wY; @ P XpBa'wY; @.

Both previous applications may be done in reverse order, but this leads to the
same result.

Tube 2.

No applications of rules.

Step 8i+3.

Tube 1.

No applications of rules.

Tube 2.

Xéﬂa"wYB’ ® Y X’ﬁatié ®,

Step 8i+-4.

Tube 1.

No applications of rules.

Tube 2.

106 CHAPTER 8. MODIFIED TEST TUBE SYSTEMS

Xﬁatié ® T Xaﬁozti’ ® - Xaaﬂoz ‘wY' O,

Xé,@o/wYﬁ/ ® T XpBat ‘wY! ®.

X’ﬁatiﬁ’ ® T X'BoiwY’ ®.

After this moment the evolution is similar to the evolution after the step 6 and

after several steps we obtain XAa’wY in the first tube. After that we can apply
the rule 1.3.3: XBa‘wY 3 Xa;wY, by consequent, we rotated Xwa;Y .

We note that in splte of the soundness of the computation above, we cannot
be sure that the system function correctly. Indeed, the computation of the system
depends on the parity of the step number and if a molecule would appear during
a step with another parity, then it would cause an erroneous computation. This is
why we show below that we cannot obtain incorrect molecules during a step which
is different from the one showed above.

In order to do this we analyse molecules bracketed by X and Y with indices
which can pass from the second tube to the first one. This gives us 4 possibilities:
a) Molecules of type X,wY”.

b) Molecules of type X'wY,,.
c¢) Molecules of type X,wY,.
d) Molecules of type X'wY”.

The first possibility is realisable only during an even step because we should
have been used one of rules 2.1.1, 2.1.3 or 2.1.4 which are from the first group. In
this case the molecule X,wY’ appears in the first tube during an odd step and it
cannot enter any rule because all rules that it matches are not activated during this
step. Consequently, this molecule is sent unchanged to the second tube. Similarly,
in that tube there is no rule that can be matched by this molecule. Therefore, this
molecule will change the tube at each step, as it was described above. In this way
we implemented a garbage collector which is not fixed and whose contents moves to
the other component after each step.

We shall show now that (b) is not possible. First we observe that in order to
obtain X'wY, we should have been used rules 2.2.2 and 2.1.2, by consequent, we
should had X ng in the second tube. This is possible only if this word was sent
before from the first tube. In order to have the word X 'BwY in the first tube we
should had the word XwY in the first tube during an even step. It is easy to see
that this is not possible. If we have the word XwY during an odd step, then it is
immediately sent to the second tube. Similarly, if we would had X'wY” and if we
would apply the rule 1.1.2, then the resulting word XwY” would be sent immediately
to the second tube.

Now we analyse the remaining possibilities. First we note that in the second
tube we can add at most one a to the beginning of the word and to erase at most
one « at the end. Similarly, in order to have the case (c) or (d) we need to apply
both rules once and this leaves unchanged the number of « in a word.

If we have the case (c), then only words X/ wY,! and X,wY. are sent to the
second tube. The first word represents a correct evolution and it is transformed in
X'wY” which is the case (d). The second word may become X,wY”’ which represents

8.2. CONCLUSIONS 107

the case (a) which is already examined.

If we have the case (d), then we obtain X'wY” in the first tube.

Now if we are at an odd step, then we apply the rule 1.1.2 and eventually the
rule 1.3.3 obtaining XwY’ which is sent to the second tube where it can evolve to
XqpowY! which is the case (a).

If we are at an even step, then we apply the rule 1.2.4 obtaining X'wY. After
that during an odd step we apply the rule 1.1.2 obtaining XwY which represent a
correct evolution. We can also apply rules 1.3.4, 1.2.2 or 1.2.1 obtaining X'wY},
XwYs, XwYj or XjwYy. The fourth word represents a correct evolution. The first
two words may evolve to the third word only. The third word is sent to the second
tube where it is transformed in X,wY” which is the case (a).

Simulation of productions and the result

It is easy to see that we do a correct simulation of productions of the grammar by
the rule 1.3.1 and that we obtain a correct word of the grammar by using rules 2.3.1
and 2.3.2.

O

8.2 Conclusions

In this chapter we terminate the study of the method of directing molecules. During
last three chapters we have shown different examples which use this method that
permits to simplify a lot of proofs. The key of this method, the regulated creation
based on elimination, may be realised in different ways, even if we do not have phys-
ical elimination. The systems studied in this chapter have an interesting elimination
which is dynamic. Also, the “trash” containing unwanted molecules travel from one
component to another. This process needs a good synchronisation of different parts
of the computation and it may be a good starting point for an improvement of the
method of directing molecules.

So, we stop here and in the next chapter we consider other systems which have
a different inspiration and structure, but which have strong links with systems that
we already studied.

108 CHAPTER 8. MODIFIED TEST TUBE SYSTEMS

Chapter 9
Splicing P systems

In previous chapters we were talking about computational models inspired by the
way that living beings manipulate their DNA. Consequently, our point of view was
placed at the molecular level. In this chapter we change the view and we place
ourself at the cellular level by considering membrane systems, or P systems, which
are a model of computation inspired by different intra- and inter-cellular processes.
The cell is considered as a set of compartments nested one in another and which
contain objects and evolution rules. The base model does not specify neither the
nature of these objects, nor the nature of rules. Numerous variants specify these
two parameters by obtaining a lot of different models of computing. We are inter-
ested in models having strings as objects and splicing rules as rules. Such systems
are called splicing membrane systems, or splicing P systems. It is known that two
membranes suffice to generate all recursively enumerable languages. We are partic-
ulary interested in systems having only one membrane. We found that the original
definition of such such systems given by Gh. Paun is not complete and we propose
several variants in order to complete it. We show that the choice of the variant is
important and that the computational power of obtained systems directly depends
on it. We also show similarities between splicing P systems having one membrane
and TVDH systems of degree 1. These similarities permit to simulate certain types
of such TVDH systems by splicing P systems with one membrane.

We also study non-extended splicing P systems, #.e. which have no terminal
alphabet. We give the frontier between the decidability and undecidability for these
systems by showing that two membranes suffice in order to generate all recursively
enumerable languages, while one membrane limits the power of the corresponding
systems by the family of regular languages.

In the remaining of the chapter we deal with another variant of splicing P sys-
tems: splicing P systems with immediate communication. In such systems the result
of the application of splicing rules is sent to all adjacent membranes. These systems
have a strong connection with TVDH systems and we show that two membranes suf-
fice in order to generate all recursively enumerable languages. In the same time we
show that with one membrane we can generate only the family of finite languages,
hence we showed again in this case the frontier between the decidability and the

109

110 CHAPTER 9. SPLICING P SYSTEMS

undecidability.

The method of directing molecules may also be used in the case of splicing P
systems. Even if we do not give any proof by using this method, it is still possible
to apply it and we shall indicate it at the appropriate moment.

9.1 Splicing membrane systems

In this section we give some notions about membrane systems and we introduce
splicing P systems.

A membrane structure of a P system is the hierarchical arrangement of mem-
branes which are nested into the skin membrane which separates the system from
the environment. A membrane which does not contain any other membrane is called
elementary. Each membrane defines a region. The region of an elementary mem-
brane is the space enclosed by that membrane, while the region on a non-elementary
membrane is the space between that membrane and the membranes included in it.
The Fig. 9.1 illustrates these notions. We label membranes by positive integer num-
bers. We note that there is a one-to-one correspondence between membranes and
the regions that they define, this is why we will not make in the future the difference
between membranes, their regions and their numbers.

I, s ~\
-
oY %[)J/

’ . Non-elementaty Jkin
Regions membrane Membrane

Elementary
membrane

Figure 9.1: A membrane structure

9.1. SPLICING MEMBRANE SYSTEMS 111

The spacial arrangement of membranes may be represented by a Venn diagram,
see Fig. 9.1, or by a tree whose nodes represent membranes and whose edges are
defined by the relation “be contained in”, see Fig. 9.2. The same structure can be
defined by a string of matching parenthesis where the corresponding parenthesis
have the same label. For example, the structure represented in Fig. 9.1 may be
described by the following word: [1 [2]2 [3]3 [4 [5]5 [6]6]4]1.

1
VRN
2 3 4
/N
5 6
Figure 9.2: The tree representing the membrane structure from Fig. 9.1

Definition 9.1.1. A splicing P system of degree m > 1 is the following 2m+3-tuple:
IT = (V,T,M,Al,... ,Am,Rl,...,Rm),

where V' is an alphabet, T' C V is the terminal alphabet, p is a membranes structure
containing m membranes, A; C V* are languages associated to regions 1,...,m of
p, R; are finite sets of evolution rules of form (r;tar;,tars), where r is a splicing
rule: r = uyH#HuoSus#uy and tary,tary € {here,in,out} are target indicators.

Ul | U2 (tary)

ws g (tor2) instead of (uy #uoSus#uy; tary, tars).

We can also write

We say that the system II has global rules if Ry = ... = R,.
A configuration of I is the m-tuple (Ny, ..., Ny,), where N; C V*. We define the
transition between two configurations (Ny,..., Np,)=(N{,...,N;,) as follows. In

order to pass from one configuration to another we apply splicing rules of each region
of u, in parallel, to all possible words which are in corresponding regions and after
that we distribute the result of each splicing depending on target indicators. More
exactly, if there are z,y in N; and r = (u1#uoSus#uq; tary;tary) in R;, such that
(z,y) Fr (w,2), then the words w and z are sent to the regions indicated by tar;,
respectively tars. We write this as follows (z,y) F, (w, 2)(tary, tars). If tar; = here,
then the molecule remains in the membrane i; if tar; = out, then the molecule is sent
to a region situated immediately above the membrane ¢, in this case the molecule
can also exit the system; if tar; = in, the molecule is sent to a region situated
immediately below the membrane ¢ and that is chosen non-deterministically.

Since the words are present in an arbitrary number of copies, after the application
of rule r in membrane i, the molecules and y are still present in the same region.
However, there are some particular cases which will be discussed later.

112 CHAPTER 9. SPLICING P SYSTEMS

A computation in a splicing P system II is a sequence of transitions between
configurations of II which starts from the initial configuration (Aj,...,A,,). The
result of the computation consist of all words over the terminal alphabet T which
are sent to outside of the system at some moment of the computation. We denote
by L(IT) the language generated by the system II.

If we have only one membrane, then we omit the parentheses and we write
M= My=... = M (M; = A;) for a sequence of transitions.

We can encounter the following problem: how we should proceed if we have a
word w in a membrane and we produce the same word w by a certain rule r and
this word shall be sent outside the membrane. There are two possible solutions: the
first one is to keep the old w in the membrane and to send a new copy of w outside.
The second solution is to send w outside and to eliminate it from the membrane.

A similar problem arises in the case when there are two rules which produce the
same word w one having the target indicator here and the other one having the
target indicator in or out. Also, both situations described above may happen in the
same time.

In order to solve the problems above we shall consider all possible cases and we
obtain several solutions which we present below.

Let w be a molecule which is produced by a rule 7 in the membrane ¢ and suppose
that w is sent outside of the membrane. Then we have the following possibilities:

1. The molecule w is sent outside of the membrane and no copy of it remains in
the same membrane.

2. The molecule w is sent outside of the membrane, but a copy of it remains in
the same membrane providing that one of following conditions is satisfied.

(a)
(b)
()

)

(d) One of conditions 2a or 2b is satisfied.

The molecule w is already present in the same membrane.
There is another rule r’ which produces w with the target indicator here.

Both conditions 2a and 2b are satisfied.

So, in the variant 1 we send all occurrences of the word w outside of the mem-
brane. In variants 2a and 2d, if w is produced in a membrane, then it remains
there forever. The variants 2b and 2c are situated somewhere between two extremes
above. The variants 2a and 2d were considered by Gh. Paun in [43|, but without
distinguishing them.

We say that a splicing P system is of type z if we consider the variant x in order
to solve problems above.

We denote by ELSP,,(spl,in) the family of languages generated by splicing P
systems of type 2d having the degree at most m and by ELSP,,(spl,in,,) the family
of languages generated by splicing P systems of type 2a having the degree at most m.
We also denote by ELSP,,(spl,in 1) the family of languages generated by splicing
P systems of type 1 having the degree at most m.

9.1. SPLICING MEMBRANE SYSTEMS 113

The problems above may be avoided if we consider systems which have more
than one membrane. More exactly, it is possible to construct a splicing P system
having two membranes and which generates all recursively enumerable languages
without encounter one of situations above, see [36, 9, 43]. On the other hand, we
show that in the case of only one membrane the choice of the definition is very
important and that obtained systems have a different computational power. So, in
the remaining of this section we shall consider splicing P systems which have only
one membrane.

9.1.1 Decidability results

We show below the limits of the family ELSP;(spl,in).

Let us consider splicing P systems of type 2d. Let II = (V,T,[1]1, M1, R1) be
a such system. In this subsection we consider also 1-splicing instead of 2-splicing.
This consideration does not restrict the generated language, because we can replace
every rule of form (uj #uaSus#uy;tary, tary) by two rules (uj#uSus#uy; tary) and
(usFHugSui#usg; tars), see also Proposition 3.1.2 at the page 28.

In this case we can decompose Ri: Ry = R} U RS, where R} contains all rules
having a target indicator here and R contains all rules having a target indicator
out. We also denote by o4, = (V UT, RS) and oy, = (V UT, R}) the corresponding
H schemes and by Hy, = (hy, M;) the corresponding H system.

Lemma 9.1.1. M, = U]’,ih(Ml), where M :k>Mk+1.

Proof. We shall prove this statement by induction. The base of induction is true
because both sets are equal to M;. It is easy to see that the induction step is
also true because in order to obtain M1 we add to M}y molecules obtained by the
applying rules having a target indicator here on My, i.e. My = MpUoyp, (My). O

Lemma 9.1.2. L(II) = oy, (L(Hp)) NT*.

Proof. Let w € L(IT). Then w € T*, w = z1ujuay2 and there is a number k € N
and the words z,y € M4 such that z = zjujusre and y = yiususays. There
is also a rule r = (u1#uaSus#uq; out) € R} such that the word w was produced
by the following application: (x,y) F, w. From the previous lemma we obtain
x,y € J,’jh(Ml) C L(H},). By consequent, w € oy, (L(Hp)) N T,

Conversely, if we have w € oy, (L(Hp)) NT*, then there is a number k € N,
the words x,y € Jﬁh (M) and a rule r € RS such that (z,y) b, w. In this case
x,y € Mpiq, see Lemma 9.1.2, and w is sent outside of the system by r. Also
w € T*. This implies w € L(II). O

Since the family of regular languages is closed with respect to splicing and with
respect to intersection, we obtain the following result.

Corollary 9.1.3. ELSP(spl,in) C REG.

The converse inclusion is also true.

114 CHAPTER 9. SPLICING P SYSTEMS

Lemma 9.1.4. REG C ELSP(spl,in).

Proof. 1t is easy to see that we can simulate an extended H system S by a splicing
P system of type 2d, II, which has only one membrane. This simulation can be done
as follows: for each rule r of S we consider two rules (r; here, here) and (r; out, out)
in II. In this case the first rule permits to simulate the rule r of the system S,
while the second rule permits to send outside of the membrane the result of the
computation. O

Therefore, we showed:

Theorem 9.1.5. ELSP(spl,in) = REG.

9.1.2 Undecidability results

In this subsection we consider the family ELSP,,(spl,in 7).
We shall prove the following theorem.

Theorem 9.1.6. ELSP;(spl,in 1) = RE.

We define:

Out(r) = uyp | ug (out) vy |wve (out) uy | ug
ol wi | ue (out)” wi|va (out) v | vy |

Now we show how it is possible to simulate a TVDH system of degree 1 by a
splicing P system of type 1 having one membrane. The main idea is to simulate the
application of a rule r of a TVDH system of degree 1 by the following rules:

1. (r; here, here).

2. Out(r).

The rule (1) permits to simulate the application of , while the rules (2) eliminate
initial molecules.

In order to prove the theorem we prove first the following lemma.

Lemma 9.1.7. Let D = (V,T, A, R) be a TVDH system of degree 1 which has the
following properties:

o LpyNLi =0,ie molecules produced at the step k and k + 1 are different.

e In order to obtain the resulting word we use once a rule from the set Rr C R
and the second result of this splicing may be eliminated without altering the
generated language.

Then, there is a splicing P system II € ELSP)(spl,in T) which simulates D and
L(IT) = L(D).

9.1. SPLICING MEMBRANE SYSTEMS 115

Proof.
We consider the following splicing P system II = (V. T, [1]1, M1, R"), where
M, = A et R/:R1UR2UR3 with

Ry = {(r, here, here), Out(r) : r € R\ Rg},
Ry = {(r, out,out), Out(r) : v € R},

R3={ wie (OUt):wEA}.

w | e (out)

We note that, by construction of II, if M} contains a molecule which cannot
match any rule of II, then this molecule will remain forever in the membrane and
it will not participate in any further computation, so it will never participate to
the production of the result. We shall consider the equivalence class defined by the
relation “match a rule”, i.e. we do not consider any more molecules which cannot
match any rule of the membrane. So, at each step all molecules of the system match
a rule of II and, because of the form of rules, participate in a splicing.

We claim that L(II) = L(D).

In order to prove this affirmation we shall prove the following assertions:

1. L\ T* = M.

2. Ly NT* = op, (My) NT*, where o, = (V, R,) and R, contains all rules of
R’ having a target indicator out.

Proof of 1. We shall show that Ly \ T* = My, i.e. the set of non-terminal
molecules of Ly coincide with M.

We shall prove this assertion by induction. The base of the induction is true as
both sets are equal to A. Let us suppose now that Ly \ T* = M}, and let us prove
that Lk+1 \T* = Mk+1.

Let w € Liy41\T™. Then, there are words z and y in Ly and a rule r in R\ R such
that w is produced by the following application: (z,y) -, (w,z). We remark that
the second property of D implies that the rule r belongs to the set R\ Rg, because
otherwise w would be composed only from the letters of the terminal alphabet 7.
So, the words w and z are not terminal and they are different of « and y because
of the first property of D. By induction hypothesis x and y belong to My. As
well, by construction, there is a rule (r;here, here) in II that we can apply to z
and y producing w and z: (z,y) b (w, z)(here, here). We note that, because of
the first property of D, the words w and z are different of any = and y which may
enter a rule of D, 7.e. we cannot produce molecules w and z with a target indicator
out. Therefore, the only molecules which may be sent outside are the molecules of
My, except the axioms which are sent outside by the rules of Re. So, we obtain
W,z € Mpy1.

Conversely, let w € My1. Then there are words x and y in M}, complementary
with respect to the rule (r, here, here) € R’ such that w is produced by the following
application: (x,y) F, (w, z)(here, here). We remark that if we consider a rule having
target indicators out, then the result of the application of that rule will not belong
to My41. Hence, both results w and z remain in the membrane. In the same time,

116 CHAPTER 9. SPLICING P SYSTEMS

the words = and y are sent outside by rules of Out(r). Since z and y are in Ly by
the induction hypothesis and there is, by construction, a rule » € R, we have the
following application in D: (z,y) b, (w, 2), i.e. w,z € Liy;.

So, we showed that Lyiq \ 7% = Mg41.

Proof of 2. We shall show that L1 NT™* = op,, (My,) NT*, i.e. that the terminal
words of Ly are the terminal words sent outside of the membrane at the step k+1.

Let w € L1 NT™*. Then, there are words « and y in Li and a rule r in R such
that w is obtained by the following splicing: (z,y) F, (w,z). We remark that the
second property of D implies that the rule r belongs to Rp, because otherwise w
would not be composed from letters of the terminal alphabet 7. The same property
of D implies that z,y € Ly \ T*. By consequent, z,y € M. Also, by construction,
there is a rule (7, out,out) € R’ and we can splice z and y in II by r by sending the
resulting words w and z outside of the membrane.

Conversely, if a terminal word w € T* is sent outside of the membrane by the
rule (r,out,out), where r € Rp, then this w can be obtained by using the rule r
in D. From the other hand, if a word w is sent outside of the membrane by a rule
(r, out, out), where r ¢ Rp, then this word will contain non-terminal letters because
of the second property of D. O

Now in order to prove Theorem 9.1.6 it suffices to observe that the TVDH system
constructed in Theorem 6.3.1 satisfy the conditions of the previous lemma.

We could also use the method of directing molecules in order to prove Theo-
rem 9.1.6. We can take the flow-chart of the computation shown in the Fig. 4.1, see
page 46, and introduce necessary directing molecules. For example, following the no-
tations of Theorem 6.3.1, see Fig. 6.2 at page 76, we consider the directing molecule
Z>Y; which shall appear with period 8. For this it is enough to add the words Z5Y;,

k=1 | v,
ZsZ, Z5Z, 1 < k < T to the axioms, and to add the rules 22 Yi (here)
Z2 7 (here)

Z27 Y; (here) Z§Yz € (out) ZoY | € (out)
Z2 7 (here)’ ZQY; < (out) et ZQE c (out) 1< k < 7 to the rules of the

membrane.

9.1.3 Systems of type 2b, 2c and 2a

In this subsection we show that splicing P systems of types 2b and 2c¢ generate all
recursively enumerable languages.

Theorem 9.1.8. Let D = (V,T,A,R) be a TVDH system of degree 1. Then,
there is a splicing P system of type 2b and of degree 1, 11, which simulates D and
L(IT) = L(D).

Proof. Cousider IT = (V, T, [1]1, A, R'), where

R = {(r, here, here); (r, out, out); Out(r) : r € R} U { %’% Egzg tw € A}.

9.2. NON-EXTENDED SPLICING P SYSTEMS 117

It is easy to see that II simulates D. Let z,y € L which are complementary
with respect to the rule » € R. Then we have the following application in D:
(x,y) Fr (w,2z). In II, we have (z,y) F, (w,z) and the words w and z are sent
outside of the membrane, but their copies are kept inside as well. The words x
and y are sent outside by the rule Out(r) and they do not remain any more in the
membrane. Therefore, L(D) C L(II).

It is clear that the converse inclusion is also true. If we use a sequence of rules
(r1, here, here), ..., (ryn,out,out) in order to obtain a molecule w in II, then the
similar sequence r1,...,r, permits to obtain the same word w in D.

O

As VDH; = RE we obtain:

Corollary 9.1.9. Splicing P systems of type 2b and of degree 1 generate all recur-
swely enumerable languages.

For systems of type 2c we have a similar result.

Theorem 9.1.10. Splicing P systems of type 2¢ and of degree 1 generate all recur-
swely enumerable languages.

More exactly, this theorem is a corollary of Theorem 9.1.6. If we take the proof
of that theorem we observe that the situation when a copy of w remains in the
membrane never happens.

On the other hand, we could not describe the computational power of splicing
P systems of type 2a having only one membrane, but we suppose that they do not
have a big computational power.

Conjecture 9.1.1. ELSP(spl,in,) = REG.

We see that this case is very similar to the one discussed in subsection 9.1.1.
Indeed, it is easy to see that

M1 = My U {on, (M) \ on,(Mg)},
following notations of that section.

Similarly, it is easy to see that if a molecule w is produced in the membrane
before being sent outside, then it will remain there forever. Otherwise, it will never
be present in the membrane. This point is the main argument of our conjecture.

9.2 Non-extended splicing P systems

In this section we consider non-extended splicing P systems which differ from the
systems introduced before by the fact that they do not have a terminal alphabet.
Therefore, all words sent outside of the system form the result of the computation.

We denote by LSP,,(spl,in) the family of languages generated by non-extended
splicing P systems of degree at most m. We do not indicate the type of the corre-
sponding system because, as it it shown in the next theorem, one membrane does
not suffice in order to obtain a big computational power and with two membranes
we can avoid the problems which forced us to introduce different definitions.

118 CHAPTER 9. SPLICING P SYSTEMS

Theorem 9.2.1. LSP;(spl,in) C REG.

This theorem is a corollary of Lemma 9.1.2 and of Theorem 3.1.3; see also
Tab. 2.1.

Theorem 9.2.2. Let G = (N, T, S, P) be a type-0 grammar. Then, there is a non-

extended splicing P system of degree 2, 11, having global rules which simulates G and
L(II) = L(QG).

Proof. We construct I = (V] [1]2 |2]1, M1, M2, R1 U R) as follows.

Let NUT U{B} = {a1,a2,...,a,} (a, = B) and B ¢ {N UT}. We assume
that T = {as,...,an—1}.

In what follows we assume that:
1<i<n,0<j<n—-1,ae NUTU{B},s<p<n—-1,s—1<q<n-2.

The alphabet V is defined by:
V=N urTu {B} U {X7 Y7 Xi7 }/ia XJ/a Yj/7X07 }/07X/7Y/7 Zla Z?a ‘/’7 M/: V’iv Wi7
VJ-’,I/VJ-’,%,l,WS,l,V’,W’,VE,WE,VE,W,’E,VE,E, Zyv, Zw}.

The axioms are defined by:
M = {XSBY} U {Zl'UYj :du — vaj € P} U {Zl}/ia Z1Y), Zly‘vi/, Xlzl,le,
Xy BZy1, 21 Yy, Xy, Z1, ZiWy, Z\W o, Z\Ws 1, V' 21,V 21, Vg Z1, Z1 Wi, Vi 24,
VéIZlyZWaZV}-

My = {XiaiZa, XjZ, X;Z9, XoZ2, Z2Y', Z5Y, ZoYw , ZoW, V Zs, Vpap Zs,
Vo2, VqZa, Vs122, ZoW', ZoW, ZoWg, ZoW g, EZs}.

The rules of the system are defined as follows.

Rules of Ry:

e |uY (in) .]
117’7(”1)7 SlElu—>v€P,

lo. € @Y (in) 13. 2 Y (in) . Y/ (in)
T Z| i (here)’ T2y Y, (here)’ 7 Zy|'Y; (here)’
Xo | a (here) X' | a (here)
L5: 7 . 3 1.6: —— . :
X Zl (Z’I’L) X Z1 (zn)
17 X’ a (here) 1. 2 Y (here) 19 Xy | B (here)
XV B [2 Gin) 0 ST T Yy n) U XL [Zn (in)
! ; /! ;
Lio: Sy B)y a Yy ()
Xy | Z1 (here) Z1 | W (here)

9.2. NON-EXTENDED SPLICING P SYSTEMS 119
e |apW (in) a | W (in) a | W, (in)
1.12: L ;0 1131 —— P 1.14:
Zi | Wp (here)’ 3 Zy | Wy (here) Zy | Wq (here)’
Vi_1i | a (here) V' | a (here)
1.15: ;0 1.16:
vz) M VT2 ()
V'| a (here) a | Wg (here) Ve | a (here)
1.17 1 —— ; 1.18: ; 1.19: ;
[S Wy) Y Vi TZ (i)
VL] a (in) a | Wi (in)
1.20 : —L£— ; 1.21: E ;
0 Vi | Z1 (here)’ Zw | € (in)’
19, Bl a ()
€| Zv (out)
Rules of Rs:
/
91 X | a (here) ; 99 2 ab (here) . 23 X! | a (here) ;
Xia; | Zz (out) X{_1| Z2 (out) X5 | Z2 (out)
a | Yy (out) a |Y' (out)
245 75T (rre) 255 2TV (here)
9. 2 BY' (out) g7, @ Yy, (out) Yy XU | B (here)
T Zy| Yw o (here)’ C T Zy | Y (here)’ TV | Zy (out)
14 a (here) V, | ab (here) VIl a (here)
2.9: ;o 2.10: L ;o 2.11: ;
I Vpap | Z2 (out) ’ 0 Vo1 | Z2 (out) ’ Va | Z2 (out) ’
a | W1 (out) a | W (out)
2.12: = ;213 ;
Zy | W' (here)’ 3 Zy | W (here)’
a | BW' (out) a | Wp (out) Vi | a (here)
2.14: —— ;0 2.15: E ; 2.16 : —£ ;
Zo| We (here)’ 2 [WE (here)’ 2 TE Z (out)

We claim that L(II) = L(G).

We shall prove this assertion in the following way. First we show how we can
simulate the derivations of the formal grammar G. In this way we prove that L(G) C
L(II). In the same time we consider all other possible evolutions and we show that
they do not lead to a terminal string. By consequent our assertion will be proved.

Our simulation is based on the “rotate-and-simulate” method, see also Sec-
tion 4.1.2 and Theorem 4.3.1. We perform the rotation and the simulation of rules
of the grammar by rules 1.1 to 1.6 and 2.1 to 2.5. When we have B at the end of the
word, we substitute the brackets X and Y by V and W by rules 1.7 to 1.11 and 2.6
to 2.8. After that we perform the rotation step but we rotate only terminal letters
of the grammar. The rules 1.12 to 1.16 and 2.9 to 2.13 permit to do this. When
we have again the symbol B at the end of the word, we know that the considered
string is terminal and that it is in a right form. At this moment we eliminate the
parentheses V and W by rules 2.14 to 2.16 and 1.17 to 1.22. We note that, by
construction, these rules permit to send outside of the system only terminal words.

We also note that the rules are symmetrical with respect to parentheses X,Y
and V, W: the rules 1.2 to 1.11 and 2.1 to 2.8 are identical to rules 1.12 to 1.21 and
2.9 to 2.16 if we make the following transformation: X — V., Y — W, Xy — Vg,

120 CHAPTER 9. SPLICING P SYSTEMS

Y — Wg and 0 — s — 1. This symmetry is due to the fact that we perform two
times similar steps: rotation and fixation of the result. The difference is only in the
fact that the second time we consider only terminal letters for the rotation.

We remark that this repetition of the rotation was proposed by Gh. Paun in [43],
but the obtained system had four membranes.

Notations

We note that bottom site of each rule represents a molecule which is already present
in the corresponding membrane. Moreover, one of the results of the splicing will
contain Z and thus will not contribute to the production of the result. So, we will
omit these molecules and we will write:

Xwa;Y EEY XwY;(tary) instead of

(Xw]aZY Z]Y) Fio (XwY;, Za;Y') (tary;tars).

Like in the previous section the rules are constructed in a special way such that
if a molecule cannot enter any rule, then it will never enter any rule and it will never
contribute to the result. Similarly, we write w T if the molecule w is in such a case.

We also note that, by construction, the rules from R; can be used in the first
membrane only, as they contain at leat one target indicator in, and the rules from
Ry can be used only in the second membrane, because at least one of the targets is
out.

Rotation

We start with XwaY in the first membrane.
XwarY EEY XwYy(in),

XwYg -7 X WY (out).

We have 4 cases:

a) We have molecules of form XpapwY;, 7 > 0 in the first membrane. Then:

XoarwY; oy X'apwY;(in) 1.

b) We have molecules of form X;arwYp, i > 0 in the first membrane. Again they
cannot evolve any more:

XiarwYy T.

¢) We have molecules of form XjaiwY;, i,j > 0 in the first membrane. Then
we have the following computation:

XiapwY; -5 XiapwY] (in),

X;arwY; 4 Y X} qjapwY] (out),

X/ 1aka —> X 1akai,1(in),

XJ JapwY;_q 2—> X _1axwY;_1(out) or X _japwYy -7 X _japwY’(out) 1.
So we decreased simultaneously by 1 the indices of X and Y.
d) We have molecules of form XpapwYp in the first membrane. This gives us:
Xgakao ? X’akag(in),

9.2. NON-EXTENDED SPLICING P SYSTEMS 121

X'arpwYy vy X'arwY'(out),
(*) X’aka’ 7 XapwY'(in),
(**) Xaka’ Y'Y XarwY (out) or XapwY’ Y X;a;apwY’ (out) 1.

So we rotated X wagY . It is possible to apply the rules 1.7 and 2.6 in cases
labeled by (*) and (**), but these applications will be discussed later.

Simulation of productions of the grammar

If we have the word XwuY in the first membrane and if there is a production
u — v € P, then we can apply the rule 1.1 which produces XwovY', i.e. we simulated
the corresponding production of the grammar.

Checking for termination

We obtain X’wY” in the first membrane (case (*)). Now we can use the following
rules:
X'wy’ = Xy BwY'(in),
XVBwY Py Xy Bw'Yyw (out) if w=w'B,
XVBw'YW T Xy Bw'Y}y, (here) or Xy Bw'Yy T X{, Buw'Yw (in) 1,
Xy Buw'Yy, 1—> X{, Buw'Yy, (in),
X\, Bw'Yy, Y X, Bw'Y}, (out),
X{,Bu'Y}j, — 0 — X Bw'Y}[,(here) or X{,Bw'Y}}, o X{, Bw'W(in) 1,
X{ Bu'Y}j, — o — X Bw'W (in),
X{ Bw'W e VBw'W (out).
The evolution of V Bw'W is examined later.

Other possible evolutions:
1. (case (**)) XwY”’ v Xw'Yw (out) (w =w'B),

Xw'Yw vy Xw’YW(here) 1.
2. XVBwY' P Xy BwY (out),
Xy Buw'a;Y E} Xy Buw'Y;(in) 1 or Xy BwY T X{,wY (in) 1.

Rotation of terminals

Now we perform a rotation of terminal letters of the grammar only, i.e. we check
if w’ € T*. The computation is very similar to the general rotation, see above, and
if we substitute X by VY by W and 0 by s — 1, then we obtain exactly the same
evolution.

We have VwaiW in the first membrane.

Vwai,W TS VwWy(in),

Vka W VjajWWk(out).

122 CHAPTER 9. SPLICING P SYSTEMS

We have now 4 cases:
a) We have molecules of form Vi_jarwW;,i > s — 1 in the first membrane. Then:
Vs_lakai E; V’akai(in) T

b) We have molecules of form VjarwWs_1,i > s — 1 in the first membrane. Again
they cannot evolve any more:

ViagwWs_1 1.
¢) We have molecules of form VjapwW;, 4,5 > s — 1 in the first membrane. Then
we have the following computation:

ViapwW; T ViarwW]_, (in),

ViagwW_, PET Vi_jarwWi_,(out),

Vi_jagwWi_4 o Vi_jarwWi_(in),

Vj’_lakai_l YT Vj_1axwW,;_1(out) or Vj'_lakao YT Vj'_laka'(out) 1.

So we decreased simultaneously by 1 the indices of V and W.

d) We have molecules of form V;_jarwW,_; in the first membrane. This gives us:
Ve_1ar,wWe_q R V'apwWs_1(in),

V'apwWs_q G V'apwW' (out),
(+) V’aka’ T VarwW'(in),
(++) Vaka IR Va,wW (out) or VapwW’ T Via;apwW' (out) 1.

So we rotated VwakW It is possible to apply the rules 1.17 and 2.15 in cases
labeled by (+) and (++), but these applications will be discussed later.

Obtention of the result

We obtain V'wW’ in the first membrane (case (+)). Now we can use the following
rules:

ViwW’ T VewW! (in),
VewY’ i Xyw'Wg(out) if w = w'B,
Vew'Wg T Vew' Wi (here) or VEw'Wg T Viw' Wg(in) 1,
VEw’WE TS VEw’WE(n),
Viw' W, 2—15> Viw' Wi (out),
Viw' Wi o VE Hw' Wi (here) or VEw’Wg o Viw'(in) 1,
Vaw' Wi, o A’ (in),
Viw' T Ew (out),
Ew' = w’(out).
In this case the word w’ which is terminal is sent outside of the system and it
will belong to the result of the computation.

Other possible evolutions:
1. (case (++)) VwW’ 1 Vw'Wg(out) (w=w'B),

Vuw'Wg = Vw'Wp,(here) 1.

9.3. SPLICING P SYSTEMS WITH IMMEDIATE COMMUNICATION 123

2. VewW’ o VewW (out),
Vew'ap,W o Vew' Wy (in) T ou VEwW T ViwW (in) 1.

It is easy to see that by following the computation above we generate all words
of L(G) and, as we considered all possible cases, it is clear that the system does not
produce other words. O

9.3 Splicing P systems with immediate communication

In this section we consider splicing P systems with immediate communication which
differ from the systems introduced in Section 9.1 by the fact that the result of each
splicing shall move from the membrane in which it was produced. More exactly, we
can see an splicing P system with immediate communication as a splicing P system
whose rules do not contain the target indicator here and in the same time each
splicing rule appears with the four possible combinations of target indicators in and
out.

We denote by ELSP,,(spl, move) the family of languages generated by splicing
P systems with immediate communication of degree at most m. Like in the previous
section we do not indicate the type of the considered system, because we can avoid
the problems which forced us to introduce different definitions.

If we have only one membrane, then at each step we send outside of the system
the same molecules which are the result of splicing of axioms. By consequent, we
have the following result:

Theorem 9.3.1. ELSP;(spl,move) = FIN.
Two membranes are already enough in order to have a big computational power.

Theorem 9.3.2. Let G = (N,T,S,P) be a type-0 grammar. Then, there is a
splicing P system with immediate communication of degree 2, I1, which simulates G

and L(IT) = L(G).

Proof. We construct II = (V, T, [1[2 |2]1, M1, Ma, R1, R2)) as follows.
Let NUT U{B} = {a1,a2,...,an} (a, = B) and B ¢ {N UT}.
In what follows we assume that:

1<i<n,0<j<n-1,1<k<n,ac NUTU{B}.
The alphabet V is defined by:

V= NUTU{B}U{X,Y,Xi,Yi,XO,YO,XJ.’,YJ.’,X’,Y’,Z,ZX,Zy}.
The terminal alphabet 7' is the same as for the formal grammar G.
The axioms are defined by:

My, = {XSBY} U{ZvYj | u — va; € P} U{ZY;, ZY), ZYJ.’,X’Z,XZ, Zx}.
My = {Xja;Z, XJ.’Z, X;Z2,2Y',ZY, Zy }.
The rules of the system are defined as follows.

124 CHAPTER 9. SPLICING P SYSTEMS

Rules of Ry:

e |uY .) ;. € | auY . .
1.1: 7 ’U}/j s 1f3u—>vaJ6P, 117’T7 lfaUHEEP,
€| aiY a| Yy a|Y/
1.2: ; 1.3: ; 1.4: ;
7Yy Z\Y Z|Y; ’
Xo | a X' |a X' a
1-5 . 7}7 9].-6 . X Z)]..7 . 6 ZX

Rules of Rs:

We claim that L(IT) = L(G).

We shall prove this assertion in the following way. First we show how we can
simulate the derivations of the formal grammar G. In this way we prove that L(G) C
L(IT). In the same time we consider all other possible evolutions and we show that
they do not lead to a terminal string. By consequent our assertion will be proved.

Our simulation is based on the “rotate-and-simulate” method, see also Sec-
tion 4.1.2 and Theorem 4.3.1. We start with the word Xwa;Y in the first mem-
brane. After the application of rule 1.2 the word XwY; is sent to the second mem-
brane. After that, the rule 2.1 is applied and the first membrane receives words
XjajwY; (1 <j <n). After that point the system works in a cycle where indices 4
and j decrease simultaneously. Words for which j # 4 are eliminated and only words
of type Xoa;wYp remain. After that we obtain the word Xa;wY’, so we rotated the
word Xwa;Y. If a;w = a;w’'B and a;w’ € T*, then this word which belongs to the
result is also produced and send outside of the system.

We will emphasise certain similarities between the constructed system and TVDH
systems of degree 2, in particular, the system D¢ presented in Theorem 4.3.1.

e The membranes can be seen as components.

e Ounly the result of the computation participate in the computation in the next
component, respectively next membrane.

e If a word cannot enter any rule, then it is eliminated. In the case of the system
IT this word will never participate to a splicing, so it will never contribute to
the result.

In order to obtain the third point we constructed the rules in a special way: one
can see that lower site of each rule represents a molecule which is already present
in the membrane. Therefore, if a molecule cannot enter any rule then it will never

9.3. SPLICING P SYSTEMS WITH IMMEDIATE COMMUNICATION 125

enter a rule, hence it will never contribute to the result. We write w T if the molecule
w is in a such case.

However there are differences between the system that we just constructed and
the system Dg:

e If a molecule can enter a rule, then this molecule “lives” forever in the corre-
sponding membrane, so it will participate at each step in a splicing.

Since we simulate a grammar, at each step we have several molecules which
encode different branches of the simulation and which evolve in parallel. This is
why our system is constructed in a way that permits to handle this parallelism. By
consequent, the differences above are not important for our proof.

So, the proof is very similar to the proof of Theorem 4.3.1 and the computation
of II follows closely the computation of Dg.

Using the same arguments as the ones used during the proof of Theorem 9.2.2,
we shall write:

Xwa;Y ErY XwY; instead of

(Xw|alY Z|Y) Fi2 (XwY;, Za;Y).

We also note that the resulting molecule is immediately sent outside the mem-
brane in which it was produced. Therefore, at each step this molecule changes the
membrane. By consequent, it is not necessary to indicate the current membrane,
because the indication of rule numbers suffices to solve any ambiguities.

Rotation

We start with XwaY in the first membrane.
XwarY —> XwYy,
XwYs —> X WYy
We have now 4 cases:

a) We have molecules of form XpagwY;, ¢ > 0 in the first membrane. Then:
XoapwY; - X'apwY; 1.

b) We have molecules of form X;arwYp, i > 0 in the first membrane. Again they
cannot evolve any more:

Xiakab T

c) We have molecules of form XjapwY;, ¢,7 > 0 in the first membrane. Then
we have the following computation:

Xjakai 1—3> Xjakai’_l,

XjarwYy Yy XjapwYy

X]’~_1ak7uuYi’_1 w7 X]’-_lakai_l,

X’- _japwYi_q v X;_1axwYj_q, or
X’ _japwYy -7 X _qapwY’ 7 (X’ LapwYy v X _jagw T).

So we decreased simultaneously by 1 the mdlces of X and Y.

d) We have molecules of form XpapwYp in the first membrane. This gives us:

126 CHAPTER 9. SPLICING P SYSTEMS

XoarwYy o X' apwYy,

(*) X'apwYy vy X' apwY’,

(**) X'apwY”’ = XapwY’,

XapwY’ P XaywY or XazwY”’ -7 X;a;apwY’ T,

So we rotated XwaY. Tt is possible to apply the rules 2.6 and 1.7 in cases
labeled by (*) and (**), but these applications will be discussed later.

Simulation of productions of the grammar

If we have the word XwuY in the first membrane and if there is a production v — v
in P, then we can apply the rule 1.1 or 1.1" in order to simulate the corresponding
production of the grammar and after that we continue as it is described above.

Obtention of the result

We obtain X'aiwY) in the second membrane (case (*)). Now we can use the fol-
lowing rules:

X'arpw'BY) v X'apw' (w = w'B),

X' apw’ 7 apw'’.

In this case if apw’ € T*, then it will belong to the result.

We can also apply the rule 1.6:

X'apw' s Xagw',

Xapw' -7 X;a;apw' 1.

Other possible evolutions:

We have the word X'azwY” in the first membrane (case (**)).

X'apwY’ — apwY’,

apwY’ Yy apwY,

apw'a;Y EEY apw'Y; 1.

It is easy to see that by following the computation above we generate all words
of L(G) and, as we considered all possible cases, it is clear that the system does not

produce other words. Moreover, the computation follows closely the computation
of systems presented in Theorems 4.3.1 and 9.2.2. O

9.4 Conclusions

In this section we gather certain common features of systems constructed in this
chapter.

We note that all systems from this chapter eliminate undesirable molecules in
two ways. The first possibility consists in sending these molecules outside of the
system, while the second one keeps them into membranes in a way that do not

9.4. CONCLUSIONS 127

permit their further utilisation. In order to achieve this, the rules are made in a
special way and if a molecule cannot enter any rule, then it will never participate in
a splicing, by consequent, it will never contribute to the result. These eliminations
which we call external and, respectively, internal play an important role during the
computation.

We also remark that the systems presented in this chapter have strong connec-
tions with TVDH systems. Indeed, the computation in some of the systems from
this chapter, modulo internal elimination, follows closely the computation of the
corresponding TVDH systems.

Finally, the method of directing molecules is applicable for the systems which
permit a strong external elimination, more exactly the splicing P systems of type 1,
2b and 2c.

128 CHAPTER 9. SPLICING P SYSTEMS

Conclusions

We have studied in this work H systems and their extensions, or, more generally,
different systems based on splicing. We have seen that this operation is very pow-
erful and only small additions are necessary to reach the computational power of a
Turing machine. This is not surprising, because the splicing operation has elements
depending on the context, and the context dependence is almost the universality in
the theory of formal languages.

We have seen that, without addition of other elements, the splicing operation
permits to generate only regular languages. We studied for the first time the relation
between 1-splicing and 2-splicing and showed that the family of 2-splicing languages
is strictly included in the family of 1-splicing languages. We also found non-trivial
examples of regular languages which cannot be splicing languages.

Then we studied TVDH systems which are simple and powerful at the same
time. We have shown that these systems have a big computational power with two
components and even with one component only. We also showed with the help of
a computer program, which we developed before, that certain articles on TVDH
systems have errors, and we showed how it is possible to correct them.

The main point of this thesis, the method of directing molecules, permitted us to
uniform and simplify proofs of several results. TVDH systems, ETVDH systems, test
tube systems with alternating filters, modified test tube systems and even splicing
P systems constituted the field for application of this method introduced by us.
More generally, we can say that splicing operation combined with elimination of
molecules in the sense described at the end of Chapter 6 is sufficient to obtain the
computational power of a Turing machine. Thus we recapitulate some reflections
on splicing made by different authors.

Similarly, the splicing operation in combination with membranes gives a powerful
tool and it is not surprising that we easily obtain a big computational power.

This work leaves several open problems. First, we made a small contribution
to the resolution of the problem of characterisation of splicing languages. As it it
shown in our work, now we need to consider now two cases: 1-splicing languages
and 2-splicing languages.

We also showed that TVDH systems are a good candidate for a “Turing machine”
in the area of molecular computing. As we could see, several systems have similarities
with TVDH systems, or may be even reduced to them. We think that a study in this
direction may give interesting results. This is why we also presented in Chapter 4 an

129

130 CONCLUSIONS

universal TVDH system which has a very compact description. We shall continue
investigations in this direction in order to find, in a similar way to what it was
done for Turing machines, systems which will be smaller and smaller. We think
that the research of minimal systems in combination with the simple structure and
functioning of TVDH systems may bring interesting results.

Another research direction consist in study and further development of the
method of directing molecules. Since it is a very generic method, we think that
it may have a lot of applications for different systems based on splicing, and also
for other types of n-ary operations, with n > 2. For example, as we closed the
chapter of splicing P systems by showing final results, we hope to apply the method
of directing molecules over other types of membrane systems, even those not based
on splicing.

We also approached the resolution of the problem of the computational power
of test tube systems with two tubes. The variants that we proposed are closer and
closer to the original definition. This is why we hope that the work that we have
done will help to solve this open problem. These variants have also interesting
properties like fixed and mobile garbage collectors, and their study is not finished
yet.

In conclusion, we want to add that the study of biologically inspired systems is
very exciting and can bring colossal gains. Maybe it is the time to learn new things
and, by reformulating Wordsworth, [57], “let the nature be our teacher”.

Bibliography

(1]

2]

3]

4]

5]

[6]

8]

[10]

[11]

L. M. Adleman. Molecular computation of solutions to combinatorial problems.
Science, 266, (1994), 1021-1024.

P. Bonizzoni, C. D. Felice, G. Mauri, and R. Zizza. Regular languages generated
by reflexive finite splicing systems. In Z. Esik and Z. Fulop, editors, Proceedings
of Developments in Language Theory 2003, DLT03, Szeged, Hungary, July 7-11,
2008. 2003, volume 2710 of Lecture Notes in Computer Science, 134-145.

P. Bonizzoni, C. D. Felice, G. Mauri, and R. Zizza. The structure of reflexive
finite splicing languages via Schiitzenberger constants, 2004. Submitted.

J. Cocke and M. Minsky. Universality of tag systems with p=2. Journal of the
ACM, 11(1), (1964), 15-20.

E. Csuhaj-Varju, L. Kari, and G. Paun. Test tube distributed systems based
on splicing. Computers and Al 15(2-3), (1996), 211-232.

K. Culik IT and T. Harju. Splicing semigroups of dominoes and DNA. Discrete
Applied Mathematics, 31, (1991), 261-277.

F. Freund, R. Freund, M. Margenstern, M. Oswald, Y. Rogozhin, and S. Verlan.
P systems with cutting/recombination rules assigned to membranes. In A. Al-
hazov, C. Martin-Vide, and G. Paun, editors, Preproceedings of the Workshop
on Membrane Computing. Tarragona, July 17-22, 2005. 2003, 241-251.

R. Freund and F. Freund. Test tube systems: when two tubes are enough. In
G. Rozenberg and W. Thomas, editors, Preproceedings of DLT99, Developments
wn Language Theory. World Scientific Publishing Company, 2000, 275-286.

P. Frisco. On two variants of splicing super-cell systems. Romanian Journal of
Information Science and Technology, 4(1-2), (2001), 89-100.

P. Frisco and C. Zandron. On variants of communicating distributed H systems.
Fundamenta Informaticae, 48(1), (2001), 9-20.

T. E. Goode Laun. Constants and Splicing Systems. Ph.D. thesis, Binghamton
University, 1999.

131

132

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

BIBLIOGRAPHY

T. Head. Formal language theory and DNA: an analysis of the generative
capacity of specific recombinant behaviors. Bulletin of Mathematical Biology,
49(6), (1987), 737-759.

T. Head. Splicing languages generated with one sided context. In G. Paun, ed-
itor, Computing with Bio-Molecules. Theory and Experiments. Springer Verlag,
Berlin, Heidelberg, New York, 1998, 158-181.

T. Head, G. Paun, and D. Pixton. Language theory and molecular genetics.
generative mechanisms suggested by DNA recombination. In Handbook of For-
mal Languages, 3 volumes [47], 295-360.

J. Hopcroft, R. Motwani, and J. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, Reading, Mass., 2nd edition,
2001.

L. Kari. DNA computing: arrival of biological mathematics. The
Mathematical Intelligencer, 19(2), (1997), 9-22. Earlier version un-
der the title DNA computers, tomorrow’s reality. Bulletin of the Euro-
pean Association for Theoretical Computer Science, (59):256-266, June 1996
http://www.csd.uwo.ca/ lila/amsn.ps.

S. M. Kim. An algorithm for identifying spliced languages. In Proceedings of
Cocoon97. 1997, volume 1276 of Lecture Notes in Computer Science, 403—411.

S. Kleene. Introduction to Metamathematics. Van Nostrand Comp. Inc., New-
York, 1952.

R. J. Lipton. Using DNA to solve NP-complete problems. Science, 268, (1995),
542-545.

V. Manca. A proof of regularity for finite splicing. In N. Jonoska, G. Paun,
and G. Rozenberg, editors, Aspects of Molecular Computing. Essays Dedicated
to Tom Head on the Occasion of His 70th Birthday, Springer Verlag, Berlin,
Heidelberg, New York, volume 2950 of LNCS. 2004, 309-317.

M. Margenstern and Y. Rogozhin. Generating all recursively enumerable lan-
guages with a time-varying distributed H system of degree 2. Technical report,
Institut Universitaire de Technologie de Metz, 1999. Publications du G.I.F.M.

M. Margenstern and Y. Rogozhin. A universal time-varying distributed H-
system of degree 2. In L. Kari, H. Rubin, and D. H. Wood, editors, Proceedings
of the 4th DIMACS meeting on DNA based computers. Elsevier, 1999, volume
52, (1-3), 73-80.

M. Margenstern and Y. Rogozhin. About time-varying distributed H systems.
In A. Condon and G. Rozenberg, editors, DNA Computing: 6th International
Workshop on DNA-Based Computers, DNA 2000, Leiden, The Netherlands,

BIBLIOGRAPHY 133

[24]

[25]

[26]

[27]

28]

[29]

[30]

31]

[32]

[33]

June 13-17, 2000, Revised Papers. Springer Verlag, Berlin, Heidelberg, New
York, 2000, volume 2054 of Lecture Notes in Computer Science, 53—62.

M. Margenstern and Y. Rogozhin. Time-varying distributed H systems of degree
2 generate all recursively enumerable languages. In Martin-Vide and Mitrana
[31], 399-407.

M. Margenstern and Y. Rogozhin. Extended time-varying distributed H sys-
tems - universality result. In Proceedings of The 5th World Multi-Conference
on Systemics, Cybernetics and Informatics, Industrial Systems, SCI 2001, Or-
lando, Florida USA, July 22-25, 2001. 2001, volume IX.

M. Margenstern and Y. Rogozhin. Time-varying distributed H systems of degree
1 generate all recursively enumerable languages. In M. Ito, G. Pdun, and S. Yu,
editors, Words, Semigroups, and Transductions, World Scientific, Singapore.
2001, 329-340. Festschrift in Honor of Gabriel Thierrin.

M. Margenstern and Y. Rogozhin. A universal time-varying distributed H
system of degree 1. In N. Jonoska and N. C. Seeman, editors, DNA Computing:
7th International Workshop on DNA-Based Computers, DNA7, Tampa, FL,
USA, June 10-13, 2001. Revised Papers. Springer Verlag, Berlin, Heidelberg,
New York, 2002, volume 2340, 371-380.

M. Margenstern, Y. Rogozhin, and S. Verlan. Time-varying distributed H
systems of degree 2 can carry out parallel computations. In M. Hagiya and
A. Ohuchi, editors, DNA Computing: 8th International Workshop on DNA-
Based Computers, DNAS, Sapporo, Japan, June 10-13, 2002. Revised Papers.
Hokkaido University, Springer Verlag, Berlin, Heidelberg, New York, 2002, vol-
ume 2568 of Lecture Notes in Computer Science, 326-336.

M. Margenstern, Y. Rogozhin, and S. Verlan. Time-varying distributed H
systems with parallel computations: the problem is solved. In Preliminary
Proceedings of DNA Computing, 9th international Workshop on DNA-Based
Computers, DNA 2003, Madison, Wisconsin, USA, 1-4 June 2003. 2003, 47—
51.

C. Martin-Vide, G. Paun, and A. Rodriguez-Paton. P systems with immediate
communication. Romanian Journal of Information Science and Technology,

4(1-2), (2001), 171-182.

C. Martin-Vide and V. Mitrana, editors. Where Do Mathematics, Computer
Science and Biology Meet. Kluwer Academic, Dortrecht, 2000.

M. Minsky. Computations: Finite and Infinite Machines. Prentice Hall, Engle-
wood Cliffts, NJ, 1967.

D. Pixton. Regularity of splicing languages. Discrete Applied Mathematics,
69(1-2), (1996), 101-124.

134

[34]

[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

BIBLIOGRAPHY

L. Priese, Y. Rogozhin, and M. Margenstern. Finite H-systems with 3 test tubes
are not predictable. In R. Altman, A. Dunker, L. Hunter, and T. Klein, editors,
Proceedings of Pacific Symposium on Biocomputing, 3, Kapalua, Maui, January
1998, Hawaii, USA. World Scientific Publishing Company, 1998, 547-558.

A. Paun. On time-varying H systems. Bulletin of EATCS, 67, (1999), 157-164.

A. Paun and M. Paun. On the membrane computing based on splicing. In
Martin-Vide and Mitrana [31], 409-422.

G. Paun. On the splicing operation. Discrete Applied Mathematics, 70(1),
(1996), 57-79.

G. Paun. Regular extended H systems are computationally universal. JALC,
1(1), (1996), 27-36.

G. Pdun. DNA computing: distributed splicing systems. In J. Mycielsky,
G. Rozenberg, and A. Salomaa, editors, Structures in Logic and Computer
Science. A Selection of Fssays in Honor of A. Ehrenfeucht. Springer Verlag,
Berlin, Heidelberg, New York, 1997, volume 1261 of Lecture Notes in Computer
Science, 351-370.

G. Paun. DNA computing based on splicing: universality results. In M. Mar-
genstern, editor, Proceedings of the Second Internetional Colloquium on Univer-
sal Machines and Computations, Metz, France. ITUT de Metz, 1998, volume I,
67-91.

G. Paun. Computing with membranes. Journal of Computer and System Sci-
ences, 1(61), (2000), 108-143. Also TUCS Report No. 208, 1998.

G. Paun. DNA computing based on splicing: universality results. Theoretical
Computer Science, 231(2), (2000), 275-296. Journal version of [40].

G. Paun. Membrane Computing. An Introduction. Springer Verlag, Berlin,
Heidelberg, New York, 2002.

G. Paun, G. Rozenberg, and A. Salomaa. DNA Computing: New Computing
Paradigms. Springer Verlag, Berlin, Heidelberg, New York, 1998.

G. Paun and T. Yokomori. Membrane computing based on splicing. In E. Win-
free and D. K. Gifford, editors, DNA Based Computers V. American Mathe-
matical Society, 1999, volume 54 of DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, 217-232.

Y. Rogozhin. Small universal turing machines. Theoretical Computer Science,
168(2), (1996), 215-240.

G. Rozenberg and A. Salomaa. Handbook of Formal Languages, 3 volumes.
Springer Verlag, Berlin, Heidelberg, New York, 1997.

BIBLIOGRAPHY 135

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[53]

[56]

[57]

[58]
[59]

[60]

[61]

M. P. Schutzenberger. Sur certaines opérations de fermeture dans les langages
rationnels. Symposia Mathematica, 15, (1975), 245-253.

TVDHsim: Time-varying distributed H systems simulator.
http://lita.sciences.univ-metz.fr/ verlan/.

S. Verlan. On extended time-varying distributed H systems. In Preproceedings
at 6th International Workshop on DNA-Based Computers, DNA 2000, Leiden,
The Netherlands, June 13-17, 2000. 2000, 281. Poster.

S. Verlan. Calculs Moléculaires: les Systémes Distribués a Changement de
Phase. Master’s thesis, Université de Metz, 2001.

S. Verlan. On enhanced time-varying distributed H systems. Computer Science
Journal of Moldova, 10(3), (2002), 263-279. Kishinev.

S. Verlan. About splicing P systems with immediate communication and non-
extended splicing P systems. In A. Alhazov, C. Martin-Vide, and G. Paun,
editors, Preproceedings of the Workshop on Membrane Computing. Tarragona,
July 17-22, 2003. 2003, 461-473.

S. Verlan. A frontier result on enhanced time-varying distributed H systems
with parallel computations. In Preproceedings of DCFS’03, Descriptional Com-
plexity of Formal Systems, Budapest, Hungary, July 12-14, 2003. 2003, 221-232.

S. Verlan. Communicating distributed H systems with alternating filters. In
N. Jonoska, G. Paun, and G. Rozenberg, editors, Aspects of Molecular Com-
puting. Fssays Dedicated to Tom Head on the Occasion of His 70th Birthday,
Springer Verlag, Berlin, Heidelberg, New York, volume 2950 of LNCS. 2004,
367-384.

S. Verlan and R. Zizza. 1-splicing vs. 2-splicing: separating results. In Proceed-
ings of WORDS’03, Turku, Finland, September 10-13, 2003. 2003, 320-331.

W. Wordsworth. The tables turned. In Wordworth’s Poems, Ed. P. Wayne,
Dent, London, volume 1996. 1965.

C. Zandron. The P systems web page. http://psystems.disco.unimib.it/.

C. Zandron, C. Ferretti, and G. Mauri. A reduced distributed splicing system
for RE languages. In G. Paun and A. Salomaa, editors, New trends in Formal
Language. Control, cooperatio, and conbinatorics. Springer Verlag, Berlin, Hei-
delberg, New York, 1997, volume 1218 of Lecture Notes in Computer Science,
346-366.

C. Zandron, C. Ferretti, and G. Mauri. Nine test tubes generate any RE
language. Theoretical Computer Science, 231(2), (2000), 171-180.

R. Zizza. On the power of classes of splicing systems. Ph.D. thesis, University
of Milan, 2002.

